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PREFACE

The 51st Winter School of Theoretical Physics on Irreversible dynamics: Nonlinear,
Nonlocal and Non-Markovian Manifestations, organized by the University of Wrocław
and the University of Opole, was held in Lądek Zdrój, Poland, during the period
9–14 February 2015.

The conspicuous “non” attitude in the School leading scientific thread was
inspired by the continually deepening theoretical understanding of the broad field
of irreversible phenomena and related dynamical processes. Presently we know that
various deviations from the well-established through decades framework need to
be accounted for. They no longer can be considered irrelevant. Even if we keep
in mind that physics may be perceived as an art of approximate modeling, both
on the experimental and theoretical levels of description of reality. We are aware
of a number of major theoretical contributions to theories of nonlinear, nonlocally
induced and non-Markovian stochastic processes (of purely classical and quantum
origin) that were completed in the seventies and eighties of the 20th century. Those
were the golden years of the more or less traditional semigroup theory as well.

A revival and new developments in that theoretical framework, in various areas
of physics and mathematics, are being documented nowadays, specifically with
a strong emphasis on quantum problems. A significant departure from the semigroup
framework proved to be necessary in the study of open quantum systems, where
various non-Markovian dynamics scenarios had to be classified and understood.

Nonetheless, a broad semigroup dynamics framework has been here considered
as a conceptual basis for other extensions of the traditional formalism of the
nonequilibrium statistical mechanics (and thence irreversible dynamics), like e.g. the
nonlocal and nonlinear evolution scenarios. It has been also viewed as a solid
departure point towards modern approaches to non-Markovian evolutions of quantum
systems.

The main purpose of the School was to create a platform for an exchange of
modern viewpoints/ideas on the irreversible dynamics, that are physics-inspired but
whose range might extend from theoretical physics proper, through mathematical
physics towards pure mathematics. Plenary lectures and likewise their audience have
shared a mixed origin: theoretical physics and pure mathematics not set against each
other, but regarded as a source of mutual inspiration.

School plenary lectures typically provided reviews of relevant topics. It is seldom
so that original new results can emerge on their basis in a relatively short time. It is
a gift from our lecturers that some of them have undertaken the serious endeavour
to write a comprehensive paper that would convey the new yet unpublished message
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as a direct outcome of the School activities. The present guest issue of the Reports
on Mathematical Physics contains a distinctive sample of contributions that cover
majority of central topics we wished to address as the School Organizers. We thank
warmly the contributiors for their excelent job.

Last but not least we wish to acknowledge a financial support from the Polish
Academy of Sciences and Polish Academy of Arts and Sciences, we have received
to enhance the School activities.

Guest Editors and the School Organizers:

Lech Jakóbczyk
Wojciech Cegła
Andrzej Frydryszak
Piotr Garbaczewski (Opole)
Robert Olkiewicz
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Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample

from a given measure π by constructing a Markov chain that has π as invariant measure and that

converges to π . Most MCMC algorithms make use of chains that satisfy the detailed balance

condition with respect to π ; such chains are therefore reversible. On the other hand, recent work

[18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling.

Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller

asymptotic variance as well). In this paper we discuss some of the recent progress in the study of

nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in

the analysis of nonreversible processes and we discuss some analytical methods to approach the

study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible

diffusions are available for continuous-time processes; however, for computational purposes one

needs to discretize such dynamics. It is well known that the resulting discretized chain will not,

in general, retain all the good properties of the process that it is obtained from. In particular, if

we want to preserve the invariance of the target measure, the chain might no longer be reversible.

Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23],

which results from a nonreversible discretization of a nonreversible dynamics.

Keywords: Markov chain Monte Carlo, nonreversible diffusions, hypocoercivity, Hamiltonian

Monte Carlo.

1. Introduction

The combined use of Bayesian statistics and Markov Chain Monte-Carlo (MCMC)
sampling methods has been one of the great successes of applied mathematics and
statistics in the last 60 years. While the Bayesian approach constitutes a flexible
framework for inference through data assimilation, MCMC turns such a theoretical
framework into practice by providing a powerful sampling mechanism to extract
information from the posterior measure. For this reason, and because of the wide
spectrum of problems that can be recast in Bayesian form, MCMC has been
a revolution in the applied sciences. MCMC is employed in parameter estimation,
model validation and, ultimately, in inference. Combined with the Bayesian inference
paradigm, MCMC is of current use in finance, biology (population genetics, molecular
biology), meteorology, epidemiology, optimization, cryptography, molecular dynamics,
computational physics (to gain knowledge about statistical quantities of interest in
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the study of large particle systems in their equilibrium state), in rare event sampling,
in big data analysis and in the field of inverse problems. This list is far from
exhaustive.

The increasing popularity of MCMC and the need to tackle problems of growing
complexity have brought higher demands on the efficiency of such algorithms, which
are often undeniably costly. The answer to such demands has produced both a higher
level of sophistication in the design of MCMC algorithms and the introduction of
a plethora of different approaches. We would however be very unfair to MCMC if
we described it as a mere algorithmic tool: the study of MCMC has in fact opened
(or it is related to) a range of beautiful questions in an unimmaginable wide range
of areas of mathematics, from pure probability to analysis, all the way to number
theory [11, 36].

The purpose of MCMC is to sample from a given target distribution π or, more
commonly, to calculate expectations with respect to π , i.e. integrals of the form

∫

χ

f (x)dπ(x), (1.1)

when analytic (or deterministic) methods are not feasible. Here π and f are
a measure and a function, respectively, both defined on the state space χ . Broadly
speaking, the calculation of integrals (1.1) is of interest in the applied sciences for
several reasons: i) for different choices of the function f , such integrals represent
various statistical properties of a system in equilibrium (with stationary measure
π ) or properties of the posterior measure, π , in a Bayesian context; ii) if Xt is
the solution at time t of a given stochastic differential equation (SDE), then the
expectation

E[f (Xt)] (1.2)

can be recast in the form (1.1); iii) thanks to the Feynman–Kac formula, integrals
of type (1.1) are representations of the solution of a large class of PDEs, as well.

Roughly speaking (we will be more precise in Section 4), the basic prescription
behind MCMC can be explained as follows: construct a Markov chain {xn}n∈N that
converges to our target distribution π . In this way, if we run the chain “long
enough”, as n → ∞ we will effectively be extracting samples from π . Also, if the
chain we constructed enjoys good ergodic properties, the ergodic theorem can be
employed, thereby providing an approximation for the quantity (1.1)

lim
n→∞

1

n

n−1∑

k=0

f (xk) = Eπ (f ) :=
∫

χ

f (x)dπ(x). (1.3)

In order for this process to work efficiently, the constructed chain should: i)
converge to equilibirum as fast as possible (all the samples out of equilibrium are
not needed); ii) once equilibrium is reached, explore the state space as quickly
and thoroughly as possible. This paper intends to comment on some aspects related
to point i). Regarding i): the classical MCMC framework—and in particular the
popular Metropolis–Hastings (M–H) technique (see Section 4.1)—typically makes
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use of reversible chains, i.e. chains which satisfy the detailed balance condition
with respect to π . However, it is a well documented principle that, loosely speaking,
nonreversible chains might converge to equilibrium faster than reversible ones. We
will be more clear on this matter in Section 3. For the moment let us just say that
this observation has started to produce a stream of literature aimed at improving the
speed of convergence to equilibrium of MCMC methods by designing algorithms that
produce nonreversible chains. In this spirit, we will present an algorithm, recently
introduced in [23], which does not belong to the M–H framework, as it produces
a Markov chain which does not satisfy detailed balance with respect to the target
measure. This is the SOL-HMC algorithm (Second Order Langevin–Hybrid Monte
Carlo), presented in Section 5. In the present paper we will mostly be concerned
with irreversibility and therefore we will only tangentially comment on another
important aspect related to the SOL–HMC algorithm: SOL–HMC does not suffer
from the so-called curse of dimensionality. That is, the cost of the algorithm does
not increase when the dimension of the space in which it is implemented increases.
We will be more precise on this point in Section 4.2.

The remainder of the paper is organized as follows: in Section 2 we recall some
basic definitions, mostly with the purpose of fixing the notation for the rest of
the paper (references are given for those not familiar with the topic). Section 3 is
devoted to the study of exponentially fast convergence to equilibrium for irreversible
dynamics. The Markov dynamics presented here, central to the development of
the SOL–HMC algorithm, are hypoelliptic and irreversible; i.e. their generator is
nonelliptic and not self-adjoint, so classical techniques do not apply; in order to study
these degenerate dynamics the Hypocoercivity Theory has been recently introduced
in [38]. Section 3 contains a short account of such an approach. Section 4 is
devoted to an elementary introduction to MCMC, including the popular Random
Walk Metropolis (RWM), Metropolis Adjusted Langevin Algorithm (MALA) and
Hybrid (or Hamiltonian) Monte Carlo (HMC). The last section, Section 5, contains
an example of an irreversible MCMC algorithm, the so-called SOL–HMC (Second-
Order Langevin–Hamiltonian Monte Carlo), introduced in [23]. In this context we
will explain how irreversibility can be obtained from the composition of Markov
transition probabilities that do satisfy detailed balance.

2. Preliminaries and notation

In this section we briefly recall some basic facts that will be used in the
following. More details about the basic formalism introduced here can be found in
[3, 25, 15, 12]. Consider an ordinary stochastic differential equation in R

d of the
form1

dx(t) = b(xt)dt + σ(xt)dWt , (2.1)

where Wt is a d-dimensional standard Brownian motion and the drift and diffusion
coefficients (b : Rd → R

d and σ : Rd → R
d×d , respectively) are globally Lipshitz. It

1For any time-dependent process or function, we will use the notations ht and h(t) interchangeably.
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is a standard fact that under these assumptions there exists a unique strong solution
to the SDE (2.1). The solution x(t) is a Markov diffusion process. Because b and σ
are time-independent, x(t) is a time-homogeneous Markov process.

To the process xt we can associate a Markov semigroup as follows. For any
function f : Rd → R, say2 f ∈ Bm, and any point x ∈ R

d , we can define

f (x, t) := E [f (xt)|x0 = x] ,

where E denotes expected value (with respect to the noise Wt ). Notice that the
function f is a deterministic function. By using the Itô formula, one can immediately
see that f (x, t) solves the Cauchy problem

∂tf (x, t) = Lf (x, t),

f (x, 0) = f (x), x ∈ R
d,

(2.2)

where L is the second-order differential operator defined on smooth functions as

L =
d∑

i=1

bi(x)∂xi
+

1

2

d∑

i,j=1

6ij (x)∂2
xixj

, 6(x) := σ(x)σ T (x),

having denoted by σ T the transpose of the matrix σ . The operator L is (under the
assumptions of the Hille–Yoshida theorem) the generator of the Markov semigroup Pt

associated with the PDE (2.2); i.e. formally

f (x, t) = etLf (x) = (Ptf )(x).

With abuse of nomenclature, we will often refer to L as to the generator of the
diffusion process (2.1). The standard example belonging to this framework is the
heat semigroup: in this case the process x(t) is simply Brownian motion (i.e. in
(2.1) b = 0 and σ is the identity matrix) and the (formal) generator of the semigroup
is the Laplacian operator.

We recall that a probability measure µ on R
d is invariant for the Markov

semigroup Pt if, for every h ∈ Bm,
∫

Rd
(Pth)(x)µ(dx) =

∫

Rd
h(x)µ(dx).

Using the dual semigroup P ′
t , acting on measures, this can also be rewritten as

P ′
tµ = µ or L′µ = 0, where L′ denotes the L2-adjoint of L.3

In view of the link between the Markov process xt solution of the SDE (2.1)
and the semigroup Pt , every attribute of the semigroup will also hold for the
process and vice versa, unless otherwise stated. So e.g. we say that the measure
µ is invariant for the process x(t) if it is invariant for the semigroup associated
to x(t). The measure µ is called invariant because if x(0) is distributed according

2Bm := {bounded and measurable functions on R
d }.

3L is the generator of the dynamics and the associated evolution equation, equation (2.2), governs the

evolution of the observables. L′ is often refereed to as the Fokker–Planck operator; L′ describes the evolution

of the law of the process.
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to µ, x(0) ∼ µ, then x(t) ∼ µ for every t ≥ 0. The process xt is ergodic if it
admits a unique invariant measure. In this case the only invariant measure is called
the ergodic measure of the process and it represents the equilibrium state (in law)
of the system.

Central to our discussion will be the definition of reversibility.

DEFINITION 2.1. A Markov semigroup Pt is reversible with respect to a probability
measure µ (or, equivalently, the probability measure µ is reversible for the Markov
semigroup Pt ) if for any f, g ∈ Bm∫

(Ptf )g dµ(x) =
∫

f (Ptg) dµ(x). (2.3)

In this case it is also customary to say that Pt satisfies the detailed balance
condition with respect to µ.

Notice that if µ is reversible then it is invariant as well. If xt is reversible with
respect to µ and x(0) ∼ µ then for any T > 0 and any 0 ≤ t1 ≤ . . . ≤ tk < T ,
the law of (x0, xt1

, . . ., xtk , xT ) is the same as the law of (xT , xT −t1
, . . ., xT −tk , x0).

In other words, the forward and the time-reversed process have the same law (on
this matter see e.g. [25, Section 4.6]). It is easy to show that Pt is reversible with
respect to µ if and only if the generator L is symmetric in L2

µ, where

L2
µ :=

{
functions f : Rd → C such that

∫

Rd
f 2dµ < ∞

}
.

Because we will be using discrete-time as well as continuous-time Markov
processes, we mention here that for a given Markov chain xn, n ∈ N, on a state
space S (tipically S will be a finite or countable set, R

d or a separable Hilbert
space H), we will denote by p(x, A), x ∈ S, A ⊂ S, the transition probabilities of
the chain (and by pn(x, A) the n-step transition probabilities). If S is finite or
countable the transition probabilities are specified by {p(x, y)}x,y,∈S . In this case
the detailed balance condition with respect to a measure π on S can be rewritten
as follows

π(x)p(x, y) = π(y)p(y, x), ∀x, y ∈ S. (2.4)

If the above holds, we say that xn is reversible with respect to π .
Finally, for a measure µ on R

d , we will use the same Greek letter to denote
both the measure and its density (when such a density exists), i.e. we will write
µ(dx) = µ(x)dx; Z will always denote a generic normalizing constant and for
a differential operator A, D(A) will indicate the domain of A.

3. Irreversibility

In this section we will be concerned with the study of exponentially fast
convergence to equilibrium for irreversible Markov dynamics, i.e. dynamics generated
by nonsymmetric operators. As a term of comparison, let us start from the reversible
case.
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The theory concerning reversible Markov processes has been much more developed
than the theory for nonreversible ones. This is mostly due to the fact that the
generator of a reversible Markov process is a symmetric and, under some assumptions,
self-adjoint operator; self-adjoint operators enjoy good spectral properties [27], which
makes the study of convergence to equilibrium more accessible than in the non
self-adjoint, irreversible case.

The study of exponentially fast convergence to equilibrium for reversible pro-
cesses has been tackled using both probabilistic and analytic techniques. The most
comprehensive reference on the analytic approach is [3]. While we do not intend
to review the existing methods, we would like to recall some basic results. This is
mainly to point out, by comparison, what are some of the difficulties in studying
the problem of exponentially fast convergence to equilibrium in the irreversible case.
Before stating the next definition we recall the following nomenclature: let T be
a second-order differential operator; suppose that the spectrum of T , σ(T ), is only
made of simple isolated eigenvalues, that all such eigenvalues have positive (negative,
respectively) real part and assume 0 ∈ σ(T ). Then the spectral gap of T , S(T ), is
the smallest (biggest, respectively) real part of the nonzero eigenvalues of T . Notice
that if T is the generator of a strongly continuous ergodic Markov semigroup then
0 ∈ S(T ), by the Koopman–Von Neumann theorem (see [7, Theorem 1.2.1]).

DEFINITION 3.1. Given a Markov semigroup Pt with generator L, we say that
a measure π which is reversible for Pt satisfies a spectral gap inequality if there
exists a constant α > 0 such that

α

∫

R

[
f −

∫

R

f dπ

]2

dπ ≤ −〈Lf, f 〉π , for every f ∈ L2
π ∩ D(L). (3.1)

The largest positive number α such that (3.1) is satisfied is the spectral gap of the
self-adjoint operator L.

The term on the RHS of (3.1) is called the Dirichlet form of the operator L.

REMARK 3.1. If L is a self-adjoint operator then the form 〈Lf, f 〉π is real-
valued. In particular the spectrum of L is real. If L is the generator of a strongly
continuous Markov semigroup and the semigroup is ergodic then we already know
that 0 is a simple eigenvalue of L. If (3.1) holds, then 〈Lf, f 〉π ≤ 0 for every f ,
therefore the self-adjoint operator −L is positive and all the eigenvalues of −L will
be positive. The biggest positive α such that (3.1) holds is the smallest nonzero
eigenvalue of −L, i.e. α is the spectral gap.4 The next proposition clarifies why
spectral gap inequalities are so important. Notice however that, at least on a formal
level, it makes sense to talk about spectral gap inequalities if one can guarantee
that the quantity 〈Lf, f 〉π is at least real. This cannot be guaranteed in general if
L is not self-adjoint. �

4This reasoning might appear more transparent if we take mean zero functions, that is f such that
∫

f dπ = 0.
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PROPOSITION 3.1. A measure π reversible with respect to the Markov semi-
group Pt satisfies a spectral gap inequality (with constant α) if and only if

∫

R

(
Ptf −

∫

R

f dπ

)2

dπ ≤ e−2αt

∫

R

(
f −

∫

R

f dπ

)2

dπ, (3.2)

for all t ≥ 0 and f ∈ L2
π .

A proof of the above proposition can be found in [15, Chapter 2]. The spectral gap
inequality formalism is one of the most established techniques to study exponential
convergence for reversible diffusions. However this cannot be used—at least not as
it is—in the irreversible case (on this point we also mention the related interesting
paper [19]).

If irreversible diffusions are harder to study than reversible ones, it is natural
to wonder why one would want to employ them in the study of MCMC. The
reason is readily explained: plenty of numerical evidence—although not as many
theoretical results—shows that irreversible processes converge to equilibrium faster
than reversible dynamics. We illustrate this idea with an example (to the best of
our knowledge this is one of the very few examples where rigorous results are
available). Consider the Ornstein–Uhlenbeck process (OU)

dYt = −Ytdt +
√

2dWt , Yt ∈ R
d . (3.3)

Yt is ergodic with unique invariant measure π(y) = e−|y|2/2/Z . Yt is also reversible
with respect to π . Now consider the process Zt obtained from Yt by adding
a nonreversible perturbation to the drift, i.e. modify the OU process in such a way
that the invariant measure of the new process is still π but Zt is no longer reversible
with respect to π ,

dZt = (−Zt + γ (Zt))dt +
√

2dWt , with ∇ · (γ (z)e−V (z)) = 0.

The condition ∇ · (γ (z)e−V (z)) = 0 is added in order to preserve the invariance
of π . It can be shown (see [21, 18, 24]) that S(Z) ≤ S(Y ) and that the process Zt

converges faster than Yt .
One of the most popular approaches to study exponential convergence to equilibium

in the nonreversible case is given by the hypocoercivity theory, which we briefly
review below.

3.1. Hypocoercivity theory and second-order Langevin equation

Let us start by introducing the Second-Order Langevin (SOL) equation, which is
possibly the simplest example of dynamics that retains all the properties that we are
interested in. Also, it is the dynamics that we will use to construct the SOL–HMC
algorithm in Section 5. By SOL we mean the following SDE (or slight variations):

dq = pdt

dp = −∂qV (q)dt − pdt +
√

2dWt ,
(3.4)
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where (q, p) ∈ R
2, V (q) ∈ C∞ is a confinig potential (i.e. V (q) → ∞ as |q| → ∞

and V (q) grows at least quadratically at infinity5) and Wt is a one-dimensional
standard Brownian motion. The generator of (3.4) is

L = p∂q − ∂qV (q)∂p − p∂p + ∂2
p (3.5)

and the corresponding Fokker–Planck operator is

L′ = −p∂q + ∂qV (q)∂p + ∂p(p·) + ∂2
p. (3.6)

Notice that L′ is nonuniformly elliptic. In particular, it is hypoelliptic. We will
not linger on this fact here and refer the reader to [39] for a concise and clear
introduction to the hypoellipticity theory. We just observe that the fact that ∂t −L′

is hypoelliptic on R+ × R
2 implies that the law of the process (3.5) has a density

for every t > 0. The dynamics generated by the operator (3.5) is ergodic as well
and the density of the unique invariant measure of such a dynamics is

ρ(q, p) =
e−(V (q)+p2/2)

Z
. (3.7)

The dynamics described by (3.4) can be thought of as split into a Hamiltonian
component,

q̇ = p,

ṗ = −∂qV (q), (3.8)

plus an OU process (in the p variable, see (3.3)):

dq = pdt,

dp = −∂qV (q)dt −pdt +
√

2dWt︸ ︷︷ ︸
OU process

.

Indeed, Eqs. (3.8) are the equations of motion of a Hamiltonian system with
Hamiltonian

H(q, p) = V (q) +
p2

2
.

At the level of the generator this is all very clear: we can write the operator L as

L = LH + LOU ,

where

LH := p∂q − ∂qV (q)∂p (3.9)

is the Liouville operator of classical Hamiltonian mechanics and

LOU := −p∂p + ∂2
p

5Under this assumption strong uniqueness and nonexplosivity are guaranteed, see e.g. [35, Chapter 10].
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is the generator of an OU process in the p variable. By the point of view of our
formalism, the Hamiltonian dynamics (3.8) admits infinitely many invariant measures,
indeed

−L′
Hf (H(q, p)) = LHf (H(q, p)) = 0 for every f (smooth enough).

So any integrable and normalized function of the Hamiltonian is an invariant
probability measure for (3.8). Adding the OU process amounts to selecting one
equilibrum.

To distinguish between the flat L2 adjoint of an operator T and the adjoint in
the weighted L2

ρ , we shall denote the first by T ′ and the latter by T ∗. The scalar

product and norm of L2
ρ will be denoted by 〈·, ·〉ρ and ‖ · ‖ρ , respectively. Notice

now that the generator LH of the Hamiltonian part of the Langevin equation is
antisymmetric both in L2 and in L2

ρ . It is indeed straightforward to see that

LH = −L′
H .

Also, 〈LHf, g〉ρ = −〈f,LHg〉ρ for every f, g say in L2
ρ ∩ D(LH ),

〈LHf, g〉ρ =
∫

R

∫

R

(
p∂qf − q∂pf

)
gρ dpdq

= −
∫

R

∫

R

fp∂q(gρ) dpdq +
∫

R

∫

R

f q∂p(gρ) dpdq

= −
∫

R

∫

R

fp(∂qg)ρ +
∫

R

∫

R

qf (∂pg)ρ = −〈f,LHg〉ρ .

The generator of the OU process is instead symmetric in L2
ρ and, in particular,

LOU = −T ∗T ,

where
T = ∂p, so that T ∗ = −∂p + p.

In conclusion, the generator of the Langevin equation decomposes into a symmetric
and antisymmetric part. Moreover, the antisymmetric part comes from the Hamiltonian
deterministic component of the dynamics, the symmetric part comes from the
stochastic component.

Using Stone’s theorem (see e.g. [27]) we also know that the semigroup generated
by LH is norm-preserving, while it is easy to see that the semigroup generated by
LOU is dissipative, indeed

d

dt
‖etLOU h‖2

ρ = 2〈LOUetLOU h, etLOU h〉ρ

= −2〈T ∗T ht , ht〉ρ = −2‖T ht‖2
ρ < 0,

where we used the notation ht(x) = etLOU h(x). In conclusion, so far we have the
following picture:
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L = LH︸︷︷︸
skew symmetric

↓
deterministic

conservative

− T ∗T︸︷︷︸
symmetric

↓
stochastic

dissipative

This is precisely the setting of the hypocoercivity theory. The hypocoercivity
theory, subject of [38], is concerned with the problem of exponential convergence
to equilibrium for evolution equations of the form6

∂th +
(
A∗A − B

)
h = 0, (3.10)

where B is an antisymmetric operator 7. We shall briefly present some of the basic
elements of such a theory and then see what are the outcomes of such a technique
when we apply it to the Langevin equation (3.4).

We first introduce the necessary notation. Let H be a Hilbert space, real and
separable, ‖ · ‖ and (·, ·) the norm and scalar product of H, respectively. Let A
and B be unbounded operators with domains D(A) and D(B) respectively, and
assume that B is antisymmetric, i.e. B∗ = −B, where ∗ denotes adjoint in H. We
shall also assume that there exists a vector space S ⊂ H, dense in H, where all
the operations that we will perform involving A and B are well defined.

Writing the involved operator in the form T = A∗A − B has several advantages.
Some of them are purely computational. For example, for operators of this form
checking the contractivity of the semigroup associated with the dynamics (3.10)
becomes trivial. Indeed, the antisymmetry of B implies

(Bx, x) = −(x, Bx) H⇒ (Bx, x) = 0. (3.11)

This fact, together with (A∗Ax, x) = ‖Ax‖2 ≥ 0, immediately gives

1

2

d

dt
‖e−tT h‖2 (3.11)= −‖Aht‖2 ≤ 0.

On the other hand, conceptually, the decomposition A∗A−B is physically meaningful
as the symmetric part of the operator, A∗A, corresponds to the stochastic (dissipative)
part of the dynamics, whereas the antisymmetric part corresponds to the deterministic
(conservative) component.

DEFINITION 3.2. We say that an unbounded linear operator T on H is relatively
bounded with respect to the linear operators T1, ..., Tn if the domain of T , D(T ),
is contained in the intersection ∩D(Tj ) and there exists a constant α > 0 s.t.

∀h ∈ D(T ), ‖T h‖ ≤ α(‖T1h‖ + ... + ‖Tnh‖).
6Generalizations to the form ∂th+

(∑m
i=1 Ai

∗Ai − B
)
h = 0 as well as further generalizations are presented

in [38]. We refer the reader to such a monograph for these cases.
7Notice that, for less than regularity issues, any second-order differential operator L can be written in the

form A∗A − B.
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DEFINITION 3.3 (Coercivity). Let T be an unbounded operator on a Hilbert

space H, denote its kernel by K and assume there exists another Hilbert space H̃

continuously and densely embedded in K⊥. If ‖ · ‖
H̃

and (·, ·)
H̃

are the norm and

scalar product on H̃, respectively, then the operator T is said to be λ-coercive

on H̃ if
(T h, h)

H̃
≥ λ‖h‖2

H̃
, ∀h ∈ K⊥ ∩ D(T ),

where D(T ) is the domain of T in H̃.

Notice the parallel with (3.1). Notice also that, from the above discussion, for
every h ∈ D(T ), the number (T h, h) is always real. Not surprisingly, the following
proposition gives an equivalent definition of coercivity (cf. Proposition 3.1).

PROPOSITION 3.2. With the same notation as in Definition 3.3, T is λ-coercive

on H̃ iff
‖ e−T th ‖

H̃
≤ e−λt ‖ h ‖

H̃
, ∀h ∈ H̃ and t ≥ 0.

DEFINITION 3.4 (Hypocoercivity). With the same notation of Definition 3.3,
assume T generates a continuous semigroup. Then T is said to be λ-hypocoercive

on H̃ if there exists a constant κ > 0 such that

‖ e−T th ‖
H̃

≤ κe−λt ‖ h ‖
H̃

, ∀h ∈ H̃ and t ≥ 0. (3.12)

REMARK 3.2. We remark that the only difference between Definition 3.3 and
Definition 3.4 is in the constant κ on the right-hand side of (3.12), when κ > 1.
Thanks to this constant, the notion of hypocoercivity is invariant under a change
of equivalent norm, as opposed to the definition of coercivity which relies on
the choice of the Hilbert norm. Hence the basic idea employed in the proof of
exponentially fast convergence to equilibrium for degenerate diffusions generated by

operators in the form (3.10), is to appropriately construct a norm on H̃, equivalent
to the existing one, and such that in this norm the operator is coercive. �

We will state in the following the basic theorem in the theory of hypocoercivity.
Generalizations can be found in [38].

THEOREM 3.1. With the notation introduced so far, let T be an operator of the
form T = A∗A − B, with B∗ = −B. Let K = Ker T , define C := [A, B], 8 and
consider the norm

‖h‖2

H1 := ‖h‖2 + ‖Ah‖2 + ‖Ch‖2

on K⊥9. Suppose the following holds:
(1) A and A∗ commute with C,
(2) [A, A∗] is relatively bounded with respect to I and A,
(3) [B, C] is relatively bounded with respect to A, A2, C and AC,

8Given two differential operators X and Y we denote by [X, Y ] = XY − YX the commutator between X

and Y .
9One can prove that space K⊥ is the same irrespective of whether we consider the scalar product 〈·, ·〉 of

H or the scalar product 〈·, ·〉
H1 associated with the norm ‖ · ‖

H1 .
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then there exists a scalar product ((·, ·)) on H1/K defining a norm equivalent to
the H1 norm such that

((h, T h)) ≥ k(‖Ah‖2 + ‖Ch‖2), ∀h ∈ H1/K, (3.13)

for some constant k > 0. If, in addition to the above assumptions, we have

A∗A + C∗C is κ-coercive for some κ > 0, (3.14)

then T is hypocoercive in H1/K: there exist constants c, λ > 0 such that

‖e−tL‖H1/K→H1/K ≤ ce−λt .

REMARK 3.3. Let K be the kernel of T and notice that Ker(A∗A) = Ker(A)
and K = Ker(A) ∩ Ker(B). Suppose Ker A ⊂ Ker B; then Ker T = Ker A. In this
case the coercivity of T is equivalent to the coercivity of A∗A. So the case we
are interested in is the case in which A∗A is coercive and T is not. In order for
this to happen A∗A and B cannot commute; if they did, then e−tT = e−tA∗AetB .

Therefore, since etB is norm preserving, we would have ‖e−tT ‖ = ‖e−tA∗A‖. This
is the intuitive reason why commutators (especially of the form [A, B]) appear in
Theorem 3.1.

COMMENT [On the Proof of Theorem 3.1]. We will not write a proof of this
theorem but we will explain how it works. The idea is the same that we have
explained in Remark 3.2. Consider the norm

((h, h)) := ‖h‖2 + a ‖Ah‖2 + c‖Ch‖2 + 2b(Ah, Ch),

where a, b and c are three strictly positive constants to be chosen. Assumptions
(1), (2) and (3) are needed to ensure that this norm is equivalent to the H1 norm,
i.e. that there exist constants c1, c2 > 0 such that

c1‖h‖H1 ≤ ((h, h)) ≤ c2‖h‖H1 .

If we can prove that T is coercive in this norm, then by Proposition 3.2 and
Remark 3.2 we have also shown exponential convergence to equilibrium in the H1

norm, i.e. hypocoercivity. So the whole point is proving that

((T h, h)) ≥ K((h, h)),

for some K > 0. If (1), (2) and (3) of Theorem 3.1 hold, then (with a few lengthy
but surprisingly not at all complicated calculations) (3.13) follows. From now on
K > 0 will denote a generic constant which might not be the same from line to
line. The coercivity of A∗A + C∗C means that we can write

‖Ah‖2 + ‖Ch‖2 =
1

2
(‖Ah‖2 + ‖Ch‖2) +

1

2
(‖Ah‖2 + ‖Ch‖2)

≥
1

2
(‖Ah‖2 + ‖Ch‖2) +

K

2
‖h‖2

≥ K‖h‖H1 .
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Combining this with (3.13), we obtain

((h, T h)) ≥ k(‖Ah‖2 + ‖Ch‖2) ≥ K‖h‖H1 ≥ K((h, h)).

This concludes the sketch of the proof. Another important observation is that, in
practice, the coercivity of A∗A + C∗C boils down to a Poincaré inequality. This
will be clear when we apply this machinery to the Langevin equation, see proof
of Theorem 3.2. �

We now use Theorem 3.1 to prove exponentially fast convergence to equilibrium
for the Langevin dynamics. We shall apply such a theorem to the operator L defined
in (3.5) on the space H = L2

ρ , where ρ is the equilibrium distribution (3.5). (The
space S can be taken to be the space of Schwartz functions.) The operators A and
B are then

A = ∂p and B = p∂q − ∂qV ∂p,

so that
C := [A, B] = AB − BA = ∂q .

The kernel K of the operator L is made of constants and in this case the norm
H1 will be the Sobolev norm of the weighted H 1(ρ),

‖f ‖2

H1
ρ

:= ‖f ‖2
ρ + ‖∂qf ‖2

ρ + ‖∂pf ‖2
ρ .

Let us first calculate the commutators needed to check the assumptions of Theo-
rem 3.1.

[A, C] = [A∗, C] = 0, [A, A∗] = Id, (3.15)

and
[B, C] = −∂2

qV (q)∂p. (3.16)

THEOREM 3.2. Let V (q) be a smooth potential such that

|∂2
qV | ≤ α

(
1 + |∂qV |

)
, for some constant α > 0. (3.17)

Also, assume that V (q) is such that the measure e−V (q) satisfies a Poincaré
inequality10. Then, there exist constants C, λ > 0 such that for all h0 ∈ H 1(ρ),

∥∥∥∥e−t Lh0 −
∫

h0 dρ

∥∥∥∥
H1(ρ)

≤ Ce−λt‖h0‖H1(ρ), (3.18)

where we recall that here L is the operator (3.5) .

Proof : We will use Theorem 3.1. Conditions (1) and (2) are satisfied, due
to (3.15). In [38, page 56 and Lemma A.19] it is shown that condition (3) holds
under the assumption (3.17) on the potential V . Now we turn to condition (3.14).

Let us first write the operator L̂ = A∗A + C∗C (notice that L̂ is elliptic),

L̂ = p∂p − ∂2
p + ∂qV ∂q − ∂2

q .

10Theorem A.1 in [38] gives some sufficient conditions in order for e−V to satisfy such an inequality.
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The operator L̂ is coercive if
∫ (∣∣∂qh

∣∣2 +
∣∣∂ph

∣∣2
)

dρ ≥ κ‖h‖2
ρ .

The above is a Poincaré inequality for the measure ρ (as we have already observed,
the kernel of T is the set of constant functions, so it suffices to write the Poincaré
inequality for mean zero functions, as we have done in the above). Therefore, in

order for L̂ to be coercive, it is sufficient for the measure ρ = e−V (q)e−p2/2 to satisfy
a Poincaré inequality. This probability measure is the product of a Gaussian measure
(in p) which satisfies a Poincaré inequality, and of the probability measure e−V (q).
In order to conclude the proof it is sufficient, therefore, to use the assumption that
e−V (q) satisfies a Poincaré inequality. �

More details about the above proof can also be found in [25].
We mention that while the hypocoercivity theory has rapidly become one of the

most popular techniques to study return to equilibrium for hypoelliptic-irreversible
processes, other avenues have recently been opened [24], based on spectral theory
and semiclassical analysis (in this context, we would also point out the paper [13]).
While the first approach mostly provides qualitative results, the latter allows a more
quantitative study. In other words, through the hypocoercivity techniques we only
know that some λ > 0 exists, such that (3.18) holds; the spectral approach [24] gives
instead the exact rate of exponential convergence, i.e. it determines λ. However,
in comparison to the hypocoercivity framework, spectral techniques only apply to
a more restricted class of hypoelliptic diffusions. Quantitative information for the
Ornstein–Uhlenbeck process has been obtained also by using the hypocoercivity-type
techniques [1].

4. Markov chain Monte Carlo

A standard and practical reference on MCMC is the book [30]. A rigorous
approach to the theory of Markov chains and some theoretical results about MCMC
are contained in [22]. The case for using MCMC is passionately argued in [11].

As we have already mentioned in Introduction, MCMC algorithms can be
employed for two purposes: i) sampling from a given target distribution π(x) which
is known only up to its normalizing constant or ii) approximate statistical quantities
of π , that is, calculate integrals of the form (1.1). In order to achieve either i)
or ii), the MCMC approach consists in building a Markov chain xn that has π
as (unique) invariant measure. Then, for example under an assumption of positive
recurrence, the ergodic theorem holds (e.g. for all f ∈ L1

π ), and the average on the
left-hand side of (1.3) is, for n large enough, a good approximation of the integral
on the right-hand side. We will not discuss here the very important practical issue
of how big n should be and other related issues.

In algorithmical practice, it is a standard procedure to start by building a chain
which admits the target measure π as unique invariant measure. This obviously does
not ensure that the chain will converge to π (in whichever sense, see Example 4.1
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below) and therefore a significant amount of literature has been devoted to the
study of convergence criteria applicable to MCMC chains. Reviewing these criteria
is beyond the scope of the present paper and we refer the reader to [14, 22, 34]
and references therein. However, for Markov chains as well as for continuous time
Markov processes, it is still the case that the great majority of the convergence
results concern reversible processes. This is mostly due to the popularity of the
Metropolis–Hastings algorithm, which we introduce in Section 4.1. Before presenting
the general algorithm, we start with a simple example (see [2]).

EXAMPLE 4.1. Suppose we want to sample from a measure π defined on a finite
state space S. In order to do so, we shall construct a Markov chain xn that converges
to π , in the sense that if p(x, y) are the transition probabilities of the Markov
chain xn, then we want

lim
n→∞

pn(x, y) = π(y). (4.1)

With the intent of constructing xn (or, equivalently, p(x, y)) we can proceed as
follows. Let q(x, y) be an arbitrary transition probability on S. Suppose the transition
matrix Q = (q(x, y))(x,y)∈S is symmetric and irreducible. Given such a Q (usually
called proposal transition matrix) and a probability distribution π(x) on S such that
π(x) > 0 for all x ∈ S, let us now construct a new transition matrix P = (p(x, y))
as follows:

p(x, y) =





q(x, y) if π(y) ≥ π(x) and x 6= y,

q(x, y)
π(y)

π(x)
if π(y) < π(x) and x 6= y,

1 −
∑

x 6=y p(x, y) otherwise.

(4.2)

It is easy to check that the matrix P = (p(x, y)) constructed in this way is an
irreducible transition matrix11. Being the state space finite, this also implies that
P is recurrent and that there exists a unique stationary distribution. We can easily
show that such an invariant distribution is exactly π as P is reversible with respect
to π in the sense (2.4). (2.4) is obviously true when x = y. So suppose that
x 6= y and π(y) ≥ π(x). Then, by construction, π(x)p(x, y) = π(x)q(x, y) but also
π(y)p(y, x) = q(y, x)[π(x)/π(y)]π(y) so that using the symmetry of q we get
π(y)p(y, x) = q(x, y)π(x) and we are done. If π(y) < π(x) we can repeat the
above with roles of x and y reversed. We are left with proving that the chain xn

with transition matrix P converges to π . We show in Appendix that convergence
(in the sense (4.1)) happens for any proposal Q unless π is the uniform distribution
on S (see Lemma A.1). This is just to highlight, on a simple example where
calculations can be easily made by hand, that the convergence of the scheme can
depend on the target measure and not only on Q. More complex (and meaningful)
examples on this point can be found in [33]. �

11Meaning that the whole state space is irreducible under P ; this implies that the state space is also closed

under P (here we mean closed in the sense of Markov chains; that is, we say that a set A of the state space

is closed if whenever x ∈ A and y is accessible from x then also y belongs to A. For a precise definition see

[10, page 246])
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The procedure (4.2) can be expressed as follows: given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) calculate

α(xn, yn+1) := min

{
1,

π(yn+1)

π(xn)

}
(4.3)

(3) set Xn+1 =
{

yn+1 with probability α(xn, yn+1)

xn otherwise.

In practice, if U [0, 1] is the uniform distribution on [0, 1], the algorithm that realizes
the above is as follows.

ALGORITHM 4.1. Given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) generate u ∼ U [0, 1];
(3) if u < π(yn+1)/π(xn) then Xn+1 = yn+1; otherwise Xn+1 = xn.

In words, given the state of the chain at time n, we pick the proposal
yn+1 ∼ q(xn, ·). Then the proposed move is accepted with probability α (4.3). If it
is rejected, the chain remains where it was. For this reason α(x, y) is called the
acceptance probability.

Algorithm 4.1 is a first example of a Metropolis–Hastings algorithm. Intuitively,
it is clear why we always accept moves towards points with higher probability. We
anyway make the obvious remark that if we want to construct an ergodic chain (in
the sense (1.3)) with invariant probability π then the time spent by the chain in
each point y of S needs to equal, in the long run, the probability assigned by π to
y, i.e. π(y). So we have to accept more frequently points with higher probability.

4.1. Metropolis–Hastings algorithm

Throughout this section our state space is R
N . For simplicity we will assume

that all the measures we use have a density with respect to the Lebesgue measure,
so π(x) will be the density of π and e.g. q(x, y) will denote the density of
the proposal q(x, ·). A very nice presentation of the theory underlying the M–H
algorithm in general state space can be found in [37].

A Metropolis–Hastings (M–H) algorithm is a method of constructing a time-
homogeneous Markov chain or, equivalently, a transition kernel p(x, y), that is
reversible with respect to a given target distribution π(x). To construct the π -
invariant chain Xn we make use of a proposal kernel q(x, y) which we know how
to sample from and of an accept/reject mechanism with the acceptance probability

α(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
. (4.4)

For simplicity we require that π(y)q(y, x) > 0 and π(x)q(x, y) > 0. The M–H
algorithm consists of two steps.
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ALGORITHM 4.2 (Metropolis–Hastings algorithm). Given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) calculate α(xn, yn+1) according to the prescription (4.4),

(3) set Xn+1 =
{

yn+1 with probability α(xn, yn+1),

xn otherwise.

LEMMA 4.1. If α is the acceptance probability (4.4),(and assuming π(y)q(y, x) >
0 and π(x)q(x, y) > 0) the Metropolis–Hastings algorithm, Algorithm 4.2, produces
a π -invariant time-homogeneous Markov chain12.

Proof : A proof of this fact can be found in [37]. �

REMARK 4.1. In order to implement Algorithm 4.2 we do not need to know
the normalizing constant for π , as it gets canceled in the ratio (4.4). However,
as observed in [30], we do need to know the normalizing constant for q: q is
a transition probability so by definition for every fixed x the function y → q(x, y)
is a probability density, i.e. it integrates to one. However, the normalizing constant
of q(x, ·) can, and in general will, depend on x. In other words, q(x, y) will in
general be of the form q(x, y) = Z−1

x q̃(x, y), with
∫

dy q̃(x, y) = Zx so that the
ratio in the acceptance probability (4.4) can be more explicitly written as

α(x, y) = min

{
1,

π(y)Zx q̃(y, x)

π(x)Zy q̃(x, y)

}
.

Clearly, if the proposal kernel is symmetric, q(x, y) = q(y, x), then there is no need
to know the normalizing constant for q, as the above expression for α reduces to
(4.3). This is a big appeal of algorithms with symmetric proposals, such as Random
Walk Metropolis, which we introduce below. �

REMARK 4.2. Let us repeat that M–H is a method to generate a π -reversible
time-homogeneous Markov chain. As we have already noticed, the fact that the
chain is π -reversible does not imply that π is the only invariant distribution for the
chain or even less that the chain converges to π . The matter of convergence of the
chain constructed via M–H is probably better studied case by case (i.e. depending
on the proposal we decide to use and on the target measure that we are trying to
sample from). Some results concerning convergence of the chain can be found in
[22, Chapter 20] and references therein or in [32, 33]. �

4.1.1. Random Walk Metropolis (RWM)

A very popular M–H method is the so called Random Walk Metropolis, where
the proposal yn+1 is of the form

yn+1 = xn + σξn+1, σ > 0;

12Lemma 4.1 can be made a bit more general, see [37].
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for the algorithm that is most commonly referred to as RWM, the noise ξ is
Gaussian, i.e. ξ ∼ N (0, σ 2) so that q(x, y) ∼ N (x, σ 2)13. Therefore the acceptance
probability reduces to α = min{1, π(y)/π(x)}. The case in which the noise ξ is
Gaussian has been extensively studied in the literature, for target measures defined
on R

N . We stress that the variables ξ1, . . . , ξn, . . . are i.i.d. random variables,
independent of the current state of the chain xn. Therefore the proposal move does
not take into account any information about the current state of the chain or about
the target measure. This is in contrast with the MALA algorithm, Section 4.1.2
below, where the proposal move incorporates information about the target. This
makes RMW a more naive algorithm than MALA.

Moreover, RWM is not immune to the curse of dimensionality: the cost of
the algorithm increases with the dimension N of the state space in which it is
implemented. Simply put: sampling from a measure that is defined on R

N is more
expensive than sampling from a measure defined on R

N−1. Here by cost of the
algorithm we mean the number of MCMC steps needed in order to explore the state
space in stationarity. In order to ameliorate this problem, it is crucial to choose
the proposal variance appropriately. In R

N it is customary to consider σ 2 = cN−γ ,
where c, γ > 0 are two parameters to be appropriately tuned, the most interesting
of the two being γ . If γ is too large then σ 2 is too small, so the proposed moves
tend to stay close to the current value of the chain and the state space is explored
very slowly. If instead γ is too small, more precisely smaller than a critical value
γc, the average acceptance rate decreases very rapidly to zero as N tends to infinity.
This means that the algorithm will reject more and more as N increases. It was
shown in the seminal paper [31] that the choice γ = 1 is the one that optimally
compromises between the need of moving far enough away from the current position
and the need of accepting frequently enough.

4.1.2. Metropolis Adjusted Langevin Algorithm (MALA)

Consider the first order Langevin equation

dXt = −∇V (Xt)dt +
√

2β−1dWt , (4.5)

where Xt ∈ R
d , V (x) is a confining potential and Wt is a d-dimensional standard

Brownian motion. β > 0 is a parameter (typically β−1 is the temperature) which
from now on we fix to be equal to one, β = 1. This dynamics is ergodic; the
(unique) invariant measure has a density ρ(x) explicitly given by

ρ(x) =
e−V (x)

Z
, (4.6)

where Z is the normalizing constant. Moreover, under the stated assumptions on the
potential, Xt converges exponentially fast to the equilibrium ρ. If we want to sample
from measures of the form (4.6), it is a natural idea to construct a Markov chain that

13In principle ξ could be chosen to be any noise with density g(x) symmetric with respect to the origin,

g(x) = g(|x|).
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converges to ρ by discretizing the continuous-time dynamics (4.5). Unfortunately one
can readily see that naive discretizations can completely destroy the good properties
of the dynamics (4.5). Indeed, as pointed out in [32], suppose we discretize (4.5)
by using the Euler scheme with step h; that is, suppose we create a chain according
to

Xn+1 ∼ N (Xn − h∇V (Xn), 2hId), Id = d-dimensional identity matrix.

Suppose your target distribution is Gaussian with zero mean and unit variance
(corresponding to V (x) = |x|2 /2) and choose h = 1. Then Xn ∼ N (0, 2) for
every n. So clearly the chain converges immediately, but to the wrong invariant
measure. This is the most drastic example of what can go wrong. In general when
discretizing, the invariance of the target measure is only approximately preserved.
To correct for the bias introduced by the discretization one can make use of the
M–H accept-reject mechanism, which guarantees that the resulting chain will be
reversible with respect to the target measure; in this way we can guarantee that, if
the chain converges, it can only converge to the correct measure. To summarize,
the MALA algorithm is as follows: suppose at step n we are in Xn. From Xn we
propose to move to Yn+1,

Yn+1 := Xn − h∇V (Xn) +
√

2h ξn+1, ξn+1 ∼ N (0, 1).

Using (4.4)14 we then accept or reject the move to Yn+1. If Yn+1 is accepted we
set Xn+1 = Yn+1, otherwise Xn+1 = Xn.

We stress again that in the context of the MALA algorithm the accept-reject
mechanism can be seen as a way of properly discretizing the first order Langevin
dynamics. The resulting chain is reversible with respect to the target distribution.
Finally, also the MALA algorithm sufferes from the curse of dimensionality.

4.2. Sampling measures defined on infinite-dimensional spaces

As in Section 3.1, let H be a separable Hilbert space. Throughout the remainder
of the paper we assume that C is a bounded, positive and symmetric operator on H

with associated eigenvalues {λ2
j }j∈N and orthonormal eigenvectors {ϕj }j∈N, that is

Cϕj = λ2
jϕj .

We will also assume that C is trace class15 and that for some κ > 1/2 we
have16

λj ≍ j−κ .

The next two algorithms that we present are aimed at sampling from measures on

14In this case q(x, ·) ∼ N (x − h∇V (x), 2hId )
15We recall that a bounded, positive and symmetric operator on a Hilbert space is trace class. if∑∞
k=1〈Cϕk, ϕk〉 < ∞.
16The notation ≍ means: there esist two positive constants c1, c2 > 0 such that c1j

−κ ≤ λj ≤ c2j
−κ .
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the space H, in particular from measures of the form17

dπ(q) ∝ e−8(q)dπ0(q), π0 ∼ N (0, C), q ∈ H. (4.7)

That is, the measure π that we want to sample from is a change of measure from
the underlying Gaussian π0. By the Bayesian point of view, (4.7) can be interpreted
to be a posterior measure, given prior π0 and likelyhood 8. More details on the
functional setting and in general on the material of this section can be found e.g. in
[4, 36]. For background reading on Gaussian measures on infinite-dimensional spaces
see [7]. It is natural to wonder why we would want to sample from a measure that
is defined on an infinite dimensional space. We explain this fact with an example.

EXAMPLE 4.2 (Conditioned diffusions). Consider the Langevin equation (4.5) in
a double well potential. That is, V (x) is confining and has two minima, say x− and
x+. Suppose we are interested only in the paths Xt that satisfy (4.5), together with
X(0) = x− and X(1) = x+. It is well known that, at least for low temperatures, if
we start the path in x−, the jump to the other potential well is a rare event, so
just simulating (4.5) subject to the initial condition X(0) = x− does not sound like
a good idea. The approach that we want to present here is the following: one can
prove that the measure on path space (i.e. on L2[0, 1]) induced by the diffusion
(4.5), with X(0) = x− and X(1) = x+, is indeed of the form (4.7) [36, Section 3.8
and references therein]. Sampling from such a measure means extracting information
from the desired paths. �

If we want to sample from π by using the MCMC approach, then we need to
construct a chain xn, defined on H, {xn} ⊂ H, such that π is the only invariant
measure of xn and xn converges to π as well. In other words, we need to construct
an algorithm that is well defined on the infinite-dimensional space H. Assume we
have been able to find such an algorithm. It is clear that in computational practice
we cannot use the infinite-dimensional algorithm directly. So instead of using the
chain xn, we will use the chain xN

n , which is obtained by projecting each element of

xn on the space HN := span{ϕ1, . . . , ϕN }. Therefore {xN
n } ⊂ R

N . One can prove that
the chain obtained in this way, as projection of an infinite-dimensional algorithm,
does not suffer from the curse of dimensionality. For example, the RWM algorithm
suffers from the curse of dimensionality (and it is in fact not well defined in infinite
dimension). However, it can be modified in such a way that the resulting algorithm
is well defined in H; such a modification is the pre-conditioned Crank–Nicolson
(pCN) algorithm (see [36]). It is also possible to prove that while the spectral gap of
the RWM chain tends to 0 as N → ∞, the spectral gap of pCN does not, see [16].

4.3. Hybrid Monte Carlo

In view of the previous section, we will describe a version of the HMC algorithm
which is adapted to sampling from measures of the form (4.7) and is well defined

17We use the symbol “∝” to mean “proportional to”, i.e. the LHS is equal to the RHS for less than

a multiplicative constant.
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in infinite dimension [5]. A very nice introduction to HMC can be found in [26].
The basic principle behind HMC is relatively simple: in order to sample from the
measure π defined on H we will create a Markov chain (qk, vk) ∈ H × H that
samples from the measure 5, on H × H, defined as follows

d5(q, v) ∝ dπ(q)dπ0(v), π0 ∼ N (0, C).

Notice that the measure 5 is the product of our target measure with a Gaussian
measure (in the v component). So effectively, in the long run, the only component
of the chain that we will be interested in is the first one, which is the one that
will be converging to π . The measure 5 can be more explicitly written as

d5(q, v) ∝ e−8(q)dπ0(q)dπ0(v), π0 ∼ N (0, C).

If we introduce the Hamiltonian

H(q, v) =
1

2
〈v, C−1v〉 +

1

2
〈q, C−1q〉 + 8(q), (4.8)

then one has
d5(q, v) ∝ e−H(q,v).

The Hamiltonian flow associated with the Hamiltonian function (4.8) can be written
as

F t :
{

q̇ = v,

v̇ = −q − C∇8(q).

The Hamiltonian flow F t preserves functions of the Hamiltonian and, at least in
finite dimensions, the volume element dqdv. It therefore preserves the measure 5.
For this reason it is a natural idea to think of using a time-step discretization of
the Hamiltonian flow as a proposal move to create the chain (qk, vk). However,
like in the MALA case, we still need to discretize the flow F t . We discretize the
Hamiltonian flow by “splitting” it into its linear and nonlinear part, i.e. by using
the Verlet integrator. The Verlet integrator is defined as follows: let Rt and 2t be
the flows associated with the following ODEs:

Rt :
{

q̇ = v,

v̇ = −q,
2t :

{
q̇ = 0,

v̇ = −C∇8(q),
(4.9)

and let
χτ := 2τ/2 ◦ Rτ ◦ 2τ/2. (4.10)

A time step discretization (of size h) of the flow F t is then given by

χh
τ = χτ ◦ · · · ◦ χτ

[
h

τ

]
times. (4.11)

We now have all the notation in place to introduce the HMC algorithm. Suppose
at time k the first component of the chain is in qk. Then
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(1) pick vk ∼ N (0, C);
(2) compute

(q∗
k+1, v

∗
k+1) = χ t

τ (qk, vk),

and propose q∗
k+1 as next move;

(3) calculate the acceptance probability αk, according to

αk = 1 ∧ e−(H(χ t
τ (qk ,vk))−H(qk ,vk)); (4.12)

(4) set qk+1 = q∗
k+1 with probability α. Otherwise qk+1 = qk.

REMARK 4.3. Some comments are in order:
• Notice that at each step the component vk is sampled independently from qk. If

the velocity variable was not resampled, the algorithm would be stuck in areas
with approximately the same probability.

• If H is infinite-dimensional, the Hamiltonian function (4.8) is almost surely
infinite. However in order for the algorithm to be well defined, all we need is
for the difference (H(χ t

τ (qk, vk))−H(qk, vk) appearing in (4.12) to be finite. This
is indeed the case (and the choice of integrator was in fact driven by the need
to satisfy this requirement [5]).

• The generated chain is reversible with respect to the target density function.
• The above algorithm is well posed in infinite dimension i.e. for (q, v) ∈ H × H.

�

5. An irreversible MCMC algorithm: the SOL–HMC

We now want to construct an MCMC algorithm which results from appropriately
discretizing the second-order Langevin equation. The algorithm that we will present
has been introduced in [23] and can be understood as a generalization of [17]. In
order to carry out such a discretization we will make use of a modification of the
HMC algorithm which we have just presented. Again, we want to sample from
a measure π of the form (4.7). First of all, let us rewrite the SOL equation in
a way adapted to our context,

dq = v dt,

dv = [−q − C ∇8(q)] dt − v dt +
√

2CdWt .
(5.1)

Eq. (5.1) is well-posed in an infinite-dimensional context [23], it is ergodic and
it admits our target π as unique invariant measure. Again, like for the MALA
algorithm, if we discretize the equation naively we risk to destroy all the good
properties of the dynamics. In particular, if we were to discretize and then use the
Metropolis–Hastings accept-reject mechanism, we would end up with a chain that
does sample from the correct measure, but such a chain would be reversible. What
we want to do here instead is to discretize the irreversible Markov dynamics (5.1)
in such a way to produce an irreversible chain. It is clear that in order to do so
we will have to leave the comfort of the Metropolis–Hastings setting.
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In order to present the SOL–HMC algorithm, we first need to introduce the
numerical integrator that we will use. To integrate (5.1) numerically, we construct
an integrator which takes advantage of the structure of the equation highlighted in
Section 3.1. Namely, we look again at the splitting “Hamiltonian + OU process”.
Recall the definition of the flows Rt , 2t , Eq. (4.9), and define Ot to be the map
that gives the solution at time t of the system

Ot :
{

q̇ = 0,

v̇ = −v dt +
√

2CdWt .

Let χτ and χh
τ be defined as in (4.10) and (4.11), respectively. For given positive

parameters h and δ (to be appropriately tuned), the proposal move and acceptance
probability of the SOL–HMC algorithm are then given by

(q∗, v∗) = (χh
τ ◦ Oδ)(q, v) (5.2)

and
α = 1 ∧ e−[H(q∗,v∗)−H(Oδ(q,v))], (5.3)

respectively. With this notation in place, the SOL–HMC algorithm proceeds as
follows:

(1) given (qk, vk), let
(q ′

k, v
′
k) = Oδ(qk, vk)

and propose
(q∗

k+1, v
∗
k+1) = (χu

τ )(q ′
k, v

′
k);

(2) calculate the acceptance probability αk, according to (5.3);
(3) set

(qk+1, vk+1) =
{

(q∗
k+1, v

∗
k+1) with probability α,

Oδ(qk, −vk) with probability 1 − α.

In words: if at step k we are in (qk, vk), we first calculate (q ′
k, v

′
k) (notice that

q ′
k = qk). Then we propose a move to (q∗

k+1, v
∗
k+1). If the move is accepted then

(qk+1, vk+1) = (q∗
k+1, v

∗
k+1). Otherwise we change the sign of the velocity, i.e. we

consider (qk, −vk) and evolve for time δ according to Oδ, so that (qk+1, vk+1) =
Oδ(qk, −vk). Notice that in case of rejection of the proposal (q∗

k+1, v
∗
k+1) we do

not stay where we started from, i.e. in (qk, vk), but we move to Oδ(qk, −vk).

REMARK 5.1. Again, let us make a few observations about the algorithm.

• The relevant energy difference here is H(q ′, v′)−H(q∗, v∗) (rather than H(q, v)−
H(q∗, v∗)); indeed the first step in the definition of the proposal (q∗, v∗), namely
the OU process Oδ(q, v), is based on an exact integration and preserves the
desired invariant measure. Therefore the accept-reject mechanism (which is here
only to account for the numerical error made by the integrator χh

τ ) doesn’t need
to include also the energy difference H(q, v) − H(q ′, v′).
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• The flip of the sign of the velocity in case of rejection of (q∗, v∗) is there to
guarantee that the overall proposal moves are symmetric. This is done in order to
ensure that the acceptance probability can be defined only in terms of the ratio
5(q∗, v∗)/5(q ′, v′), i.e. in terms of the energy difference H(q ′, v′) − H(q∗, v∗).
An interesting discussion on the matter can be found in [20, Chapter 2].

• The algorithm is well posed in finite as well as in infinite dimension.
• Most importantly, the algorithm produces an irreversible chain. How did we lose

reversibility? The important observation that this algorithm is based on is the
following [26]: detailed balance is not preserved under composition. That is, if
we consider a Markov transition kernel, say r , resulting from the composition of
transition kernels, each of them satisfying detailed balance, r does not, in general,
satisfy detailed balance as well. In the same way, each step of the SOL–HMC
algorithm satisfies detailed balance; however their composition does not. �

Beyond [17, 23] the only other MCMC irreversible algorithms that we know
of are [6, 8] (see also references therein). The advantages of irreversibility by the
point of view of asymptotic variance have also been investigated in [9, 28, 29].

Appendix

LEMMA A.1. With the setting and assumptions of Example 4.1, if π is not the
uniform distribution then the chain xn with transition probabilities p(x, y) defined
in (4.2) converges in the sense (4.1) to the target distribution π for any choice of
the (irreversible and symmetric) proposal matrix Q. If π is the uniform distribution
then convergence may happen or not, depending on Q.

Proof : (See [2] for more details on this proof) The proof is quite simple so we
only sketch it. A time-homogeneous Markov chain (MC) on a finite state space S is
said to be regular if there exists a positive integer k > 0 such that pk(x, y) > 0 for
all x, y ∈ S. Clearly a regular MC is irreducible. It is easy to prove the following:
if for any x and y in S there exists an integer n > 0 such that pn(x, y) > 0 and
there exists a ∈ S such that p(a, a) > 0 then the chain is regular. (Notice that k
is independent of x and y whereas n = n(x, y), i.e. it depends on the choice of x
and y.) A standard result in the basic theory of MCs states that if xn is a regular
chain on a finite state space then the chain has exactly one stationary distribution
π , and

lim
n→∞

pn(x, y) = π(y), for all x and y ∈ S. (A.1)

With these premises, and assuming that π is not the uniform distribution on
S, we want to show that the chain with transition matrix P is regular. Recall
that Q is irreducible, hence P is irreducible as well, therefore it is true that
for all x, y there exists n = n(x, y) > 0 such that pn(x,y)(x, y) > 0. Therefore
we only need to find a state a ∈ S such that p(a, a) > 0. Let M be the set
M = {x ∈ S : π(x) = maxy∈S π(y)}. Because Q is irreducible there exist a ∈ M and
b ∈ Mc such that q(a, b) > 0 and clearly by construction π(a) > π(b). Notice also
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that from the definition of P , p(x, y) ≤ q(x, y) for all x 6= y. Then

p(a, a) = 1 −
∑

x 6=a

p(a, x) = 1 −
∑

x 6=a,b

p(a, x) − p(a, b)

≥ 1 −
∑

x 6=a,b

q(a, x) − q(a, b)π(b)/π(a)

= 1 −
∑

x 6=a

q(a, x) + q(a, b) [1 − π(b)/π(a)]

= q(a, a) + q(a, b) [1 − π(b)/π(a)] ≥ q(a, b) [1 − π(b)/π(a)] > 0.

On the other hand if π(x) is the uniform distribution on S then p(x, y) = q(x, y)
so, because q(x, y) is symmetric, detailed balance is still satisfied so π is still
invariant18. However, if q(x, y) is periodic then convergence in the sense (A.1) does
not take place. (However, ergodic averages will still converge). �
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For a quantum channel (completely positive, trace-preserving map), we prove a generalization

to the infinite-dimensional case of a result by Baumgartner and Narnhofer [3]: this result is,

in a probabilistic language, a decomposition of a general quantum channel into its irreducible

recurrent components. More precisely, we prove that the positive recurrent subspace (i.e. the

space supporting the invariant states) can be decomposed as the direct sum of supports of

extremal invariant states; this decomposition is not unique, in general, but we can determine all

the possible decompositions. This allows us to describe the full structure of invariant states.

Keywords: quantum channel, (extremal) invariant state, enclosure.

1. Introduction

The time evolution of states of a closed quantum system is usually described as
the conjugation by a group of unitary operators on the Hilbert space representing
the state space of the system. When the system is open, that is, interacts with
its surroundings, the situation is more complicated and rigorous treatment usually
requires approximations. The most standard approach was put on solid mathematical
ground by Davies in the seventies (in [12], see also [13]), and leads to describe
the system’s evolution by a semigroup (8t)t∈R+ of linear maps on the set of
states (i.e. positive, normalized functionals acting on the set of operators on the
Hilbert space) with specific algebraic properties (see Section 2). Many features of
these continuous parameter semigroups are already contained in the case of discrete
semigroups (8n)n∈N. In addition, the interest in the discrete case was renewed by
quantum computation theory (where the maps 8 model quantum gates, see [21])
and by quantum repeated interaction systems, see [7]. We therefore restrict ourselves

[293]
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to the discrete case, and focus on the study of 8 = 81, a linear map which is
completely positive and trace-preserving. Such a map is called a quantum channel.

The study of ergodic properties of an open quantum system is related to the
study of invariants of 8, and of the associated spectrum. Analogies with operators
associated with Markov chains (see Example 2.1) inspired the development of
a notion of irreducible quantum channel by various authors in the seventies and
eighties (see [1,15,16,19]), with different (and sometimes conflicting) definitions and
implications. Associated with this notion is the possibility to decompose a reducible
quantum channel into a sum of irreducible ones. A vision of this decomposition
as related to an intuitive notion of trajectories (as for Markov chains), however,
was not developed explicitly before the work of Baumgartner and Narnhofer in [3],
where it is done in the case of a finite-dimensional Hilbert space.

In [11], we studied open quantum random walks, a special class of evolutions
belonging to the above case. This led us to restate and extend the results of [3] to
the case of open quantum random walks, which required in particular an extension
to the infinite-dimensional case. Our proofs, however, apply to a wider class of
evolutions than just quantum random walks. We therefore describe our results in
full generality here. Even if the statements of the results remain the same, we
underline that the infinite-dimensional context forces to have various modifications
with respect to the original proofs presented in [3]: the existence of a null recurrent
subspace has to be considered here and this affects the ergodic properties of the
process (see e.g. Theorem 2.1 in [18]); also compactness arguments and spectral
properties need a little more attention; the characterization of minimal enclosures
(Proposition 5.3), for instance, requires completely new elements here.

The structure of this article is as follows. In Section 2, we describe our framework
and in particular the evolutions 8 of interest, the so-called quantum channels. In
Section 3, we recall the different notions of irreducibility. In Section 4, we define
enclosures, our key tool, which originated in [3]. In Section 5, we describe the
relation between enclosures and supports of invariant states. In Section 6 we discuss
the structure of invariant states of a simple reducible evolution. In Section 7, we
state our general decomposition theorem, that describes irreducible decompositions
of evolutions and the general structure of the set of invariant states. In Section 8,
we apply these results to a number of examples.

2. States and quantum channels

In this section we give a short summary of the theory of quantum channels,
i.e. completely positive, trace-preserving maps on an ideal of trace-class operators.
We fix a separable Hilbert space H, which is supposed to play the role of a state
space for a quantum system. We denote by I1(H) the set of trace-class operators
on H (see [22]), and equip it with the topology induced by the trace norm. We
recall that the topological dual I1(H)∗ can be identified with the algebra B(H) of
bounded linear operators through the Schatten duality (ρ, X) 7→ Tr(ρ X). Therefore,
the topology of I1(H) is the same as the weak topology induced by B(H). We
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also recall that an operator X on H is called nonnegative (respectively positive
or positive-definite), denoted X ≥ 0 (resp. X > 0), if for ϕ ∈ H \ {0}, one has
〈ϕ, X ϕ〉 ≥ 0 (resp. 〈ϕ, X ϕ〉 > 0).

The states of a system will be represented by an operator belonging to a specific
class:

DEFINITION 2.1. An operator ρ is called a state if it is self-adjoint (i.e. ρ = ρ∗),
nonnegative, and is trace-class with trace one. We denote by S(H) the set of states
on H. A state is called faithful if it is positive definite.

REMARK 2.1. In the literature, a state is sometimes defined as a positive linear
form on B(H) mapping Id to 1, i.e. as an element of the set

B(H)∗+,1 = {η ∈ B(H)∗ s.t. η(X) ≥ 0 for X ≥ 0 and η(Id) = 1}
equipped with the weak-* topology. The objects defined in Definition 2.1 are then
called normal states. Obviously S(H) is homeomorphic to a subset of B(H)∗+,1.

Consider now a linear map 8 on I1(H). We say that this map is positive if
it maps nonnegative elements of I1(H) to nonnegative elements of I1(H). We say
that it is n-positive, for n ∈ N, if the map 8 ⊗ IdMn(C) is positive as a map on
I1(H ⊗ C

n); and completely positive if it is n-positive for any n in N. We say
that it is trace-preserving if, for any ρ ∈ I1(H), one has Tr(8(ρ)) = Tr(ρ); in
particular a positive trace-preserving map induces a map on S(H). Our main objects
of interest will be maps that are completely positive and trace-preserving.

DEFINITION 2.2. A completely positive, trace-preserving map on a space I1(H)
is called a quantum channel on H.

REMARK 2.2. A positive linear map on I1(H) is automatically bounded (see
Lemma 2.2 in [24]), so that it is weak-continuous.

The following theorem states a well-known fact about quantum channels (see
[20, 21]).

THEOREM 2.1. A linear map 8 on I1(H) is completely positive if and only if
there exists a family (Vi)i∈I of operators on H such that for any ρ in I1(H),

8(ρ) =
∑

i∈I

ViρV ∗
i . (2.1)

If in addition 8 is trace-preserving, then the operators Vi satisfy the relation
∑

i∈I

V ∗
i Vi = IdH.

The decomposition (2.1) is called the Kraus form of 8, and the family (Vi)i∈I

an unravelling. Note that an unravelling of 8 is not unique (see [21] for more
details).

We have mentioned that a source of inspiration is the analogy between quantum
channels and Markov chains. In the following example we point out that Markov
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chains are a special case of quantum channels. Note that, for any two vectors x
and y in a Hilbert space H with scalar product 〈·, ·〉 (which we assume is antilinear
in the left variable), we denote by |x〉〈y| the map z 7→ 〈y, z〉 x.

EXAMPLE 2.1. Consider a Markov chain (Xn)n on a countable set E with
transitions pi,j = P(Xn+1 = i | Xn = j). If we let H be ℓ2(E), the set of (complex-
valued) square-summable sequences indexed by E, denote by (ei)i∈E the canonical
orthonormal basis, and consider Vi,j =

√
pi,j |ei〉〈ej | for i, j in E, then (2.1) defines

a quantum channel which maps
∑

i∈E πn(i)⊗|ei〉〈ei | to
∑

i∈E πn+1(i)⊗|ei〉〈ei | where
πn+1 = pπn. In addition, any invariant state is of the form ρ =

∑
i∈E π(i)|ei〉〈ei |

with (π(i))i∈E an invariant probability measure for the Markov chain.

REMARK 2.3. Trace-preservation of a map 8 is equivalent to 8∗(Id) = Id. The
adjoint 8∗ is then a positive, unital (i.e. 8∗(Id) = Id) map on B(H), and by the
Russo–Dye theorem [23] one has ‖8∗‖ = ‖8∗(Id)‖ so that ‖8‖ = ‖8∗‖ = 1.

A quantum channel represents the (discrete) dynamics of an open quantum system
in the Schrödinger picture (see [21] for more details). We denote by F(8) the
subset of I1(H) of invariant elements of 8 and we will be specifically interested
in the set S(H) ∩F(8) of invariant states, i.e. elements of S(H) that are invariant
by 8.

For a state ρ we will consider its support, which is defined as the range of the
projection Id − P0(ρ), where

P0(ρ) = sup{P orthogonal projection s.t. ρ(P ) = 0}.
The supremum taken above is considered with respect to the order induced by the
relation ≥ for operators, and always exists in the present situation. Following [18],
we denote

R = sup{supp ρ | ρ an invariant state}
so that by definition, supp ρ ⊂ R if ρ is an invariant state. This space is often
called the fast recurrent space, in parallel with the classical case, where the fast
recurrent configurations are the ones which support the invariant probability laws.
The orthogonal complement of R is

D = {x ∈ H | 〈x, ρ x〉 = 0 for any invariant state ρ}.

REMARK 2.4. In [3], the states R and D are defined without reference to the
set of invariant states as

D = {x ∈ H | 〈x, 8n(ρ) x〉 −→
n→∞

0 for any state ρ}

and R = D⊥. These different definitions of R and D are equivalent in finite
dimension.

REMARK 2.5. The space D is the sum of the transient and slow recurrent
subspaces, as defined in [26].
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3. Irreducibility

Before we discuss decompositions of quantum channels, we need to discuss
the relevant reducing components of the decomposition, i.e. irreducible quantum
channels. As we will see in Proposition 3.2, irreducibility is strongly connected
with the uniqueness of the invariant state.

As we already mentioned in Introduction, however, different definitions of irre-
ducibility of quantum channels can be found in the literature. We will briefly recall
them here. First we need to define some relevant concepts.

DEFINITION 3.1. Let 8 be a quantum channel on S(H). We say that an
orthogonal projection P :

• reduces 8 if we have 8
(
PI1(H)P

)
⊂ PI1(H)P ,

• is subharmonic for 8∗ if 8∗(P ) ≥ P .

The complete proof of the following Proposition is given in [11].

PROPOSITION 3.1. Let 8 be a quantum channel on I1(H). The following
properties are equivalent:

• 8 is Davies-irreducible: the only orthogonal projections reducing 8 are P = 0
and Id;

• the only orthogonal projections that are subharmonic for 8∗ are P = 0
and Id;

• ergodicity: for any state ρ, the operator (exp t8)(ρ) is definite-positive for
any t > 0.

We say that 8 is irreducible if and only if any of the above properties holds.

REMARK 3.1. Regarding the above concepts and their interrelations:
• The equivalence between the first two properties follows from the simple

observation that an orthogonal projection reduces 8 if and only if it is
subharmonic for 8∗ (see [11, Proposition 3.3]).

• The definition of ergodicity given here originates in [24], and extends the
definition given in [16] to infinite-dimensional H.

• There exists yet another notion of irreducibility: one says that 8 is Evans-
irreducible if the only orthogonal projections that are harmonic for 8, i.e.
such that 8∗(P ) = P , are P = 0 and Id. Clearly Davies-irreducibility implies
Evans-irreducibility, but the converse is not true in general.

In the same fashion as for Markov semigroups, there exists a Perron–Frobenius
theorem related to the property of irreducibility. We state it in the next proposition,
in a form essentially due to Schrader in [24].

PROPOSITION 3.2. Let 8 be a quantum channel on I1(H), and assume it has
an eigenvalue λ of modulus 1, with eigenvector ρ. Then:

• 1 is also an eigenvalue, with eigenvector |ρ| = (ρ∗ρ)1/2,

• if 8 is irreducible, then λ is a simple eigenvalue and |ρ| > 0.
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REMARK 3.2. Proposition 3.2 still holds if 8 is not completely positive and trace-
invariant, but simply 2-positive. For this reason, the same statement holds when the
map 8 on I1(H) is replaced with the map 8∗ on B(H), and all subsequent results
about quantum channels will hold for 2-positive and trace-invariant maps on I1(H),
as long as they do not involve the Kraus form or unravelling of 8.

An immediate consequence of this proposition is that an irreducible quantum channel
on I1(H) has at most one invariant state. In Sections 6 and 7 we will study the
relations between the invariant states of a reducible quantum channel and the invariant
states of its irreducible components.

4. Enclosures and communicating classes

For Markov chains, it is well known that irreducibility is related with the notion
of communication within the induced graph. In addition, communicating classes have
an explicit description as orbits of points, and are the relevant objects to break down
a reducible Markov chain into irreducible ones. In this section we introduce the
notion of enclosure, that will parallel the notion of closed set for Markov chains,
and allows us to study irreducible decompositions of quantum channels.

DEFINITION 4.1. Let 8 be a quantum channel. A closed subspace V is an
enclosure for 8 if, for any state ρ, supp ρ ⊂ V implies supp 8(ρ) ⊂ V .

We will call nontrivial any enclosure which is neither {0} nor H. Clearly,
a subspace V is an enclosure if and only if it is the range of a reducing
orthogonal projector. Therefore, a quantum channel 8 is irreducible if and only if
it has no nontrivial enclosures. Enclosures are relevant to reducibility properties and
consequently to many other features of the channel; indeed, the notion of enclosure
has been used in literature with different names (see for instance [4, 5, 8]).

We now prove a simpler characterization of enclosures.

LEMMA 4.1. A closed vector subspace V of H is an enclosure if and only if,
for any x in V with ‖x‖ = 1, the state 8(|x〉〈x|) has support in V .

Proof : Let ρ be a state with support in V . The spectral decomposition of ρ
is of the form

∑
i∈I λi |ei〉〈ei | with λi > 0,

∑
i∈I λi = 1 and ei ∈ V . Therefore,

supp 8(|ei〉〈ei |) ⊂ supp 8(ρ), which shows the direct implication; in addition, the
support of 8(ρ) is the supremum of the projectors on the ranges of 8(|ei〉〈ei |)
and this shows the converse. �

This has the following useful corollary. Note that, for (Vi)i∈I a family of closed
subspaces of H, we denote by e.g. V1 +V2 + . . . or

∑
i∈I Vi the closed vector space

generated by
⋃

i∈I Vi .

COROLLARY 4.1. Let V1 and V2 be two enclosures. The closed subspace V1 +V2

is also an enclosure.
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Proof : By a direct computation, |x1+x2〉〈x1+x2| ≤ 2 |x1〉〈x1|+2 |x2〉〈x2| for x1, x2

in V1,V2 respectively. Applying Lemma 4.1 shows that V1 + V2 is an enclosure. �

This allows us to obtain an explicit characterization of enclosures in terms of
unravellings of 8, and connect them to a notion of orbit under the action of possible
transitions of 8.

PROPOSITION 4.1. Consider a quantum channel 8 with unravelling (Vi)i∈I . A
subspace V of H is an enclosure if and only if Vi V ⊂ V for any i.

Proof : The proposition follows from Lemma 4.1 and the fact that, by the trace
norm continuity of 8 one has for any x ∈ V ,

8(|x〉〈x|) =
∑

i∈ I

|Vix〉〈Vix|. � (4.1)

Our goal is to consider enclosures defined as the set of points accessible from
a given initial x ∈ H. Proposition 4.1 suggests a natural definition and proposition.

PROPOSITION 4.2. Let 8 be a quantum channel on I1(H). Let (Vi)i∈I be an
unravelling of 8. For x in H \ {0}, we call enclosure generated by x the closed
vector space

Enc(x) = Cx + span{Vi1
· · · Vin x, | n ∈ N∗, i1, ..in ∈ I }. (4.2)

With this definition, the space Enc(x) is the smallest enclosure containing x.

Proof : It follows from (4.1) that Definition (4.2) also satisfies

Enc(x) = span{supp 8n(|x〉〈x|), n ≥ 0}. (4.3)

This shows that Definition (4.2) is independent of the choice of unravelling. The
fact that Enc(x) is an enclosure then follows from Proposition 4.1. �

REMARK 4.1. This implies in particular that a quantum channel 8 is irreducible
if and only if H = Enc(x) for any x in H \ {0}.

We can define a notion of accessibility among vectors in H, related to the notion
of enclosure, and consider an equivalence relation. We will argue, however, that this
will not immediately provide us with an interesting decomposition of a quantum
channel.

DEFINITION 4.2. For x, y in H, we say that:
• y is accessible from x (and denote it by x→y) if y ∈ Enc(x);

• y and x communicate (and denote it by x↔y) if Enc(x) = Enc(y).

One can immediately observe that accessibility is a transitive relation, and
communication is an equivalence relation. We denote by C(x) the equivalence class
of a vector x in H for the relation ↔,

C(x) = {y ∈ Enc(x) s.t. x ∈ Enc(y)}.
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An equivalence class of a vector x by ↔ is a subset of Enc(x) but it is not
a vector space since, for x 6= 0, C(x) cannot contain 0. Even adding the point 0
may fail to make C(x) a vector space, as the next example shows.

EXAMPLE 4.1. Take H = C
2 and denote by e1, e2 its canonical basis. Consider

a quantum channel 8 on I1(H) with unravelling (V1, V2) given by V1 = √
p
(

0 1
0 0

)

and V2 =
(

1 0
0

√
1−p

)
for some p ∈ (0, 1) so that, for ρ =

(ρ1,1 ρ1,2
ρ2,1 ρ2,2

)
in I1(H), we

have

8(ρ) =
(

pρ2,2 + ρ1,1

√
1 − p ρ1,2√

1 − p ρ2,1 (1 − p)ρ2,2

)
.

By an immediate direct computation, the state |e1〉〈e1| is the only invariant state of
this map. We want to describe the equivalence classes and the enclosures of the
map 8. We notice that, for any vector u = t(u1, u2) in C

2,

|u〉〈u| =
(

|u1|2 u1ū2

ū1u2 |u2|2

)
so that 8(|u〉〈u|) =

(
p|u2|2 + |u1|2

√
1 − p u1ū2√

1 − p ū1u2 (1 − p)|u2|2

)
.

It is immediate that 8(|u〉〈u|) is a positive-definite matrix whenever u2 6= 0, so that
• supp 8n(|e1〉〈e1|) = C e1 for all n ≥ 0,

• for u2 6= 0, supp 8n(|u〉〈u|) = C
2 for all n ≥ 1.

Identity (4.3) allows us to determine all the enclosures and equivalence classes:
• Enc(0) = C(0) = {0},
• Enc(e1) = C e1 and C(e1) = Enc(e1) \ {0},
• for all u ∈ C

2 \ C e1, Enc(u) = C
2 and C(u) = C

2 \ C e1.

Supports of invariant states, on the other hand, are always vector spaces. Therefore,
the naı̈ve approach of considering the partition of H induced by the relation ↔ to
obtain a relevant decomposition of a quantum channel into irreducible such maps
fails, as it does not seem to involve the vector space structure. A natural idea,
derived from the study of Markov chains, is to consider specifically minimal objects.
We therefore give the following definition of a minimal enclosure:

DEFINITION 4.3. Let V be an enclosure. We say that V is a minimal enclosure if
any enclosure V ′ satisfying V ′ ⊂ V is either {0} or V . We say that V is a minimal
nontrivial enclosure if in addition V 6= {0}.

The following easy proposition shows that this notion is indeed relevant.

PROPOSITION 4.3. C(x) = Enc(x) \ {0} if and only if Enc(x) is a minimal
nontrivial enclosure.

Proof : If C(x) = Enc(x) \ {0}, then, for all y in Enc(x) \ {0}, we have Enc(x) =
Enc(y) and consequently Enc(x) is minimal. Conversely, if V = Enc(x) is a minimal
enclosure, for any y in V \ {0}, Enc(y) is a nontrivial enclosure contained in V so
that Enc(y) = V . Therefore x↔y and V = C(x) ∪ {0}. �



IRREDUCIBLE DECOMPOSITIONS AND STATIONARY STATES OF QUANTUM CHANNELS 301

5. Enclosures and invariant states

Baumgartner and Narnhofer in [3] studied a decomposition of a quantum channel
related to the supports of extremal invariant states, in the case of a finite-dimensional
space H. In the present paper, we extend this analysis to the infinite-dimensional
case. For this we will need to relate extremal invariant states to minimal enclosures.
We will see that the form of invariant states for the quantum channel is dictated by
the uniqueness or nonuniqueness of the decompositions into minimal enclosures and
that this is related to the existence of mutually nonorthogonal minimal enclosures.
The first result is as follows.

PROPOSITION 5.1. Let 8 be a quantum channel on H.

1. The support of an invariant state is an enclosure.

2. The fast recurrent subspace R is an enclosure.

Proof : To prove the first point, fix an invariant state ρ0, and let ρ be another
state with support contained in supp ρ0. Fix an orthonormal family of eigenvectors
for ρ0 generating supp ρ0, and let X0 be the set of finite linear combinations of
these vectors. This set X0 is dense in supp ρ0 and for every x in X0 there exists λ
such that |x〉〈x| ≤ λρ0. Therefore there exists an approximation of ρ in the I1(H)
norm sense by an increasing sequence of finite-rank operators (ρp)p such that for
every p there exists a λp with ρp ≤ λpρ0, so that 8(ρp) ≤ λp8(ρ0) and therefore
supp 8(ρp) ⊂ supp ρ0. The sequence 8(ρp) is increasing and weakly convergent to
8(ρ) so that supp 8(ρ) ⊂ supp ρ0, which proves that supp ρ0 is an enclosure.

To prove the second point, associate with every invariant state ρ the orthogonal
projector Pρ on its support. Then the orthogonal projector P on R is the supremum
of the family (Pρ)ρ . For any invariant state ρ, Pρ is subharmonic, i.e. 8∗(Pρ) ≥ Pρ

and moreover, 8∗(P ) ≥ 8∗(Pρ) ≥ Pρ , so that 8∗(P ) ≥ P and the conclusion
follows. �

REMARK 5.1. The first point of the previous proposition has already been proven
in [17] and [26] in the dual setting, i.e. considering reducing projections for 8∗. If
H is separable, the second point can also be derived from a result in [26] which
proves that there exists an invariant state with support equal to R.

REMARK 5.2. The converse of point 1 of Proposition 5.1 is not true. Consider
Example 2.1 associated with the symmetric random walk on Z. Then H = ℓ2(Z) is
an enclosure but the quantum channel 8 has no invariant state.

PROPOSITION 5.2. Let V be an enclosure, W be a subspace of H which is
in direct sum with V , and PV and PW be the projections associated with the
decomposition V ⊕ W . Consider a state ρ with support in V ⊕ W and denote

ρV = PV ρ PV , ρW = PW ρ PW , ρC = PV ρ PW , ρ ′
C = PW ρ PV .

Similarly, decompose 8(ρ) into 8(ρ)V + 8(ρ)W + 8(ρ)C + 8(ρ)′
C

. Then
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1. PW (8(ρC) + 8(ρ ′
C)) PW = 0,

2. if Z is another enclosure with V ⊂ Z ⊂ R, then Z ∩ V⊥ is an enclosure,

3. if W is also an enclosure, then

8(ρ)V = 8(ρV), 8(ρ)W = 8(ρW), 8(ρ)C = 8(ρC), 8(ρ)′C = 8(ρ ′
C).

Proof :
1. Let κ±ε = 1

ε
ρV ± (ρC + ρC′) + ε ρW . We have κ±ε ≥ 0 (as can be checked

from 〈u, κ±ε u〉 = 〈u±
√

ε, κ u±
√

ε〉, where u±
√

ε = 1√
ε
PVu ±

√
ε PWu), so that

8(κ±ε) ≥ 0, and, because V is an enclosure, the support of 8(ρV) is contained
in V , so that

PW 8(κ±ε) PW = ±PW

(
8(ρC) + 8(ρ ′

C)
)
PW + ε PW 8(ρW) PW ≥ 0,

and by necessity PW (8(ρC) + 8(ρ ′
C
)) PW = 0.

2. Consider W = Z ∩ V⊥ and ρ any invariant state; then

ρV + ρW + ρC + ρ ′
C = 8(ρV) + 8(ρW) + 8(ρC) + 8(ρ ′

C).

Considering PW · PW this yields ρW = PW8(ρW)PW , so that PV 8(ρW) PV

is positive with zero trace. Therefore PV 8(ρW) PV = 0 which implies
PV 8(ρW) = 8(ρW) PV = 0 and so ρW = 8(ρW). As the support of a station-
ary state, supp ρW = supp ρ ∩Z ∩V⊥ is an enclosure. By the same argument
used to prove point 2 of Proposition 5.1, the supremum of supp ρ ∩ Z ∩ V⊥

over all possible invariant states ρ is still an enclosure, and this is Z ∩ V⊥.

3. If V and W are enclosures, then by definition supp 8(ρV) ⊂ V and
supp 8(ρW) ⊂ W . The equality

8(ρV) + 8(ρW) + 8(ρC) + 8(ρ ′
C) = 8(ρ)V + 8(ρ)W + 8(ρ)C + 8(ρ)′C

implies 8(ρV) = 8(ρ)V and 8(ρW) = 8(ρ)W . We then have 8(ρ)C +
8(ρ)′

C
= 8(ρC) + 8(ρ ′

C
). Since Ran ρC ⊂ V ⊂ Ker ρC and ViV ⊂ V for all

i by Proposition 4.1, one has Ran 8(ρC) ⊂ V ⊂ Ker 8(ρC) and therefore
PW8(ρC)PV = 0. This implies 8(ρ ′

C
) = 8(ρ)′

C
and similarly 8(ρC) = 8(ρ)C .

�

COROLLARY 5.1. For any enclosure V contained in R, there exists an invariant
state ρ such that supp ρ ⊂ V .

Proof : By definition of R, there exists an invariant state ρ with supp ρ ∩ V 6= {0}.
By Proposition 5.2, PV ρ PV is (up to normalization) an invariant state with support
in V . �

We will now discuss the connection between minimal enclosures and extremal
invariant states, i.e. states ρ such that ρ = t ρ1+(1−t) ρ2, with ρ1, ρ2 in S(H)∩F(8)
and t ∈ (0, 1), implies ρ1 = ρ2 = ρ.

REMARK 5.3. The distinction between states and normal states mentioned in
Remark 2.1 does not lead to an ambiguity: by Example 4.1.35 in [6], the set S(H),
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when viewed as a subspace of B(H)∗+,1, is a face, so that ρ ∈ S(H) is extremal
regarding convex decompositions in S(H) ∩ F(8) if and only if it is extremal
regarding convex decompositions in B(H)∗+,1 ∩ F(8).

The following proposition is the main result in this section.

PROPOSITION 5.3. A subspace of R is a minimal enclosure if and only if it is
the support of an extremal invariant state. Moreover, any enclosure included in R

contains a (nontrivial) minimal enclosure. Equivalently, for any invariant state ρ,
there exists an extremal invariant state ρex with supp ρex ⊂ supp ρ.

Proof : If V is a minimal enclosure contained in R, then by Corollary 5.1,
there exists a 8-invariant state ρV with support in V . By the discussion following
Definition 4.1, the restriction of 8 to I1(V) is irreducible. Proposition 3.2 shows
that ρV is the unique 8-invariant state with support in V , and supp ρV = V . This
ρV must be extremal since ρV = t ρ1 + (1 − t) ρ2 with ρ1, ρ2 invariant states and
t ∈ (0, 1) would imply that ρ1, ρ2 are invariant states with support in V but then
by uniqueness, ρV = ρ1 = ρ2.

Conversely, if V = supp ρ with ρ an extremal invariant state, then by Proposition
5.1, V is an enclosure. If we suppose, by contradiction, that it is not minimal,
then there exists an enclosure W with W ( V ⊂ R and, by Corollary 5.1, an
invariant state ρ ′ with supp ρ ′ ⊂ W . Since ρ is faithful on V , by the same argument
as in the proof of Proposition 5.1, we can approximate ρ ′ in the I1(V) norm
sense by a sequence (ρ ′

p)p of finite-dimensional operators such that for every p,

there exists λp with ρ ′
p ≤ λpρ. If we let 9n = 1

n

∑n−1
k=0 8k then by a standard

compactness argument, (9n(ρ
′
p))n converges weakly to a 8-invariant nonnegative

trace-class operator ρ inv
p which therefore satisfies ρ inv

p ≤ λp ρ. The extremality of ρ

implies that ρ inv
p is proportional to ρ. This in turn implies that (9n(ρ

′))n converges

weakly to ρ, but 9n(ρ
′) = ρ ′ by the 8-invariance of ρ ′. Therefore, ρ ′ = ρ,

a contradiction.

By Proposition 5.1 and Corollary 5.1, the second and third claims are equivalent.
To prove the second one, consider the maps 8∗

R
on the set B(R) of bounded

operators acting on R defined by

8∗
R(PRxPR) = PR8∗(x)PR,

and denote by F(8∗
R

) the vector space of the fixed points for 8∗
R

, i.e. F(8∗
R

) =
{X ∈ PRB(H)PR : 8∗

R
(X) = X}. We know that F(8∗

R
) is the image of a normal

conditional expectation by Theorem 2.1 of [18]. The proof of Theorem 5 of [25]
shows then that F(8∗

R
) is an atomic subalgebra. It is trivial to verify that the

projections contained in F(8∗
R

) are exactly the projections on enclosures contained in
R. So, for any enclosure V , we consider the corresponding projection PV ∈ F(8∗

R
);

but since F(8∗
R

) is atomic, it contains a minimal projection P ′ ≤ P and the range
of P ′ is then a minimal enclosure contained in V . �
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REMARK 5.4. The proof of point 3 of Proposition 5.3 can be given in a more
constructive way: consider an invariant state ρ, which by restriction one can
assume is faithful, i.e. with support H. By the Banach–Alaoglu theorem, the set
B(H)∗+,1 ∩F(8) is a compact, convex, metrizable subset of the locally convex space
B(H)∗ equipped with the weak-* topology. By Theorem 4.1.11 and Proposition 4.1.3
in [6], and the fact that affine maps on B(H)∗ are exactly the maps η 7→ η(X)
for X ∈ B(H), there exists a Borel probability measure µ in B(H)∗, such that
ρ(X) =

∫
η(X)dµ(η) for any X, and µ has support in the set of extremal states of

B(H)∗+,1 ∩ F(8). Since in addition the set S(H) ∩ F(8) is a face, µ has support
in the set of extremal states of S(H) ∩ F(8). For any Borel set B of B(H)∗

with µ(B) > 0 one can define ρB = 1
µ(B)

∫
B

η(X)dµ(η). This ρB is a state with

supp ρB ⊂ supp ρ. By considering a sequence of Borel sets that are balls B(ρ0,
1
n
)

for the metric compatible with the weak-* topology restricted to the unit sphere of
B(H)∗, one has for µ-almost all ρ0 that ρ

B(ρ0, 1
n )

→ ρ0 in the topology of S(H),

so that supp ρ0 ⊂ supp ρ.

For any quantum channel 8, point 2 of Proposition 5.2, together with Proposition
5.3, will allow us to decompose the space R associated with 8 into a direct sum
of minimal enclosures, and each of them is the support of an extremal invariant
state. We give the following sequel to the two results quoted above, that essentially
shows that the procedure of taking orthogonal complements is efficient in terms of
decomposition into minimal enclosures.

LEMMA 5.1. Let V = V1 + · · · + Vn + Vn+1, where the Vi , i = 1, . . . , n + 1, are
distinct minimal enclosures contained in R, and Vi ⊥ Vj for i 6= j in 1, . . . , n.
Then there exists a minimal enclosure V ′

n+1, orthogonal to V1, . . . ,Vn and such that

V = V1 + . . . + Vn + V ′
n+1. If n = 1 then one can take V ′

2 = V ∩ V⊥
1 . In particular,

if a subspace of R can be written as a sum of minimal enclosures, then it can be
written as a sum of mutually orthogonal minimal enclosures.

Proof : Let us first prove the claim for n = 1. We know that V is an enclosure
as direct sum of two enclosures and so by Proposition 5.2, V ′

2 is an enclosure. If
V2 ⊥ V1 then V ′

2 = V2 and there is nothing to prove. Assume therefore that V2 6⊥ V1.
Proposition 5.3 provides us with a nontrivial minimal enclosure W ⊆ V ′

2. Then W 6⊂
V2 for otherwise W = V2 ⊂ V ′

2 and V2 ⊥ V1, a contradiction. Since W ⊂ V1 + V2,
there exists w = v1 + v2 in W with vi ∈ Vi and vi 6= 0 for i = 1, 2. Then 0 6= v2 =
w−v1 ∈ V2 ∩(W+V1). Since V2 is a minimal enclosure one must have V2 ⊂ W+V1

so that V1 +V2 = V1 +W and necessarily W = V ′
2. This proves the minimality of V ′

2.

Now if n > 1, define V ′
n+1,1 = (V1 + Vn+1) ∩ V⊥

1 . By the preceding discussion,

V ′
n+1,1 is orthogonal to V1 and V1 + Vn+1 = V1 + V ′

n+1,1. Then define V ′
n+1,2 =

(V2 +V ′
n+1,1) ∩V⊥

2 . This V ′
n+1,2 is now orthogonal to V1 and V2 and V2 +V ′

n+1,1 =
V2 + V ′

n+1,2 so that V1 + V2 + Vn+1 = V1 + V2 + V ′
n+1,2. Iterating this process gives

the desired V ′
n+1 in the form of V ′

n+1,n. �



IRREDUCIBLE DECOMPOSITIONS AND STATIONARY STATES OF QUANTUM CHANNELS 305

We therefore have our main tool for decompositions of quantum channels into
irreducible ones. We wish to relate these decompositions to the structure of invariant
states of 8. In the case of Markov chains, it is well known that these are all convex
combinations of the extremal invariant states associated with irreducible parts in the
decomposition. We will see in the next section, however, that this is not the case
for general quantum channels.

6. Invariant states of nonirreducible quantum channels

In this section we study the last ingredient of our decomposition, that is, how the
invariant states of a quantum channel on a sum V1 +V2 of two minimal enclosures
relate to the extremal invariant states associated with these two minimal enclosures.
We will see that this relation will depend on the uniqueness of the decomposition
V1 + V2.

Let us define what we mean by this uniqueness. We say that the decomposition
of a subspace Z of R in a direct sum of minimal enclosures is unique, if, whenever
(Vα)α∈A and (Wβ)β∈B are two families of minimal enclosures with

Vα ∩ Vα′ = {0} for any α 6= α′, Wβ ∩ Wβ′ = {0} for any β 6= β ′,

and Z =
∑

α∈A Vα =
∑

β∈B Wβ, then the sets {Vα, α ∈ A} and {Wβ, β ∈ B}
coincide, and in particular A and B have the same cardinality.

The following lemma characterizes the situations when the decomposition of
a subspace as the direct sum of two enclosures is unique. First remark that, by
point 2 in Proposition 5.2, if x and y are in R then

• either Enc(x) ⊥ Enc(y),

• or x 6∈ Enc(y)⊥ and y 6∈ Enc(x)⊥.

Indeed, if y ∈ Enc(x)⊥ ∩ R then Enc(y) ⊥ Enc(x).

LEMMA 6.1. Let V = V1 +V2, where V1 and V2 are minimal enclosures contained
in R. The decomposition of V in a direct sum of minimal enclosures is unique if
and only if any enclosure W such that W 6⊥ V1 and W 6⊥ V2 satisfies W ∩V = {0}.
If the latter statement holds, then the two enclosures are orthogonal.

Proof : Assume the decomposition of V as a direct sum of minimal enclosures is
unique. Then V1 ⊥ V2, otherwise by Proposition 5.2, V ∩V⊥

1 would be an enclosure
that does not contain V2, leading to a different decomposition of V . Now consider
a minimal enclosure W with W 6⊥ V1 and W 6⊥ V2. This implies W 6= V1 so that
W ∩ V1 = {0}. If W ∩ V 6= {0} then it is an enclosure in W so by minimality,
W ⊂ V . Then W ⊕ V1 is a direct sum of minimal enclosures contained in V , so,
by Proposition 5.3, one can complete this as a decomposition of V into a direct
sum of minimal enclosures. This is a contradiction, leading to W ∩ V = {0}.

Now assume that any enclosure W such that W 6⊥ V1 and W 6⊥ V2 satisfies
W ∩ V = {0}. Taking first W = V2, which obviously has a nontrivial intersection
with V , we obtain that V1 ⊥ V2. Now consider some minimal enclosure V3 contained
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in V . Then, by assumption, one has e.g. V3 ⊥ V1 and V3 6⊥ V2 and so V3 ⊂ V⊥
1 ∩V ,

which, as proved above, is V2. This proves the uniqueness of the decomposition. �

Next we need to strengthen Proposition 5.2 to distinguish between the situations
where the decomposition into minimal enclosures is unique or not. The first result
treats the situation where the decomposition is unique. To simplify the notation,
from now on, when V is an enclosure, we will denote by 8|V (instead of 8|I1(V))
the restriction of 8 to I1(V).

PROPOSITION 6.1. If ρ is 8-invariant and V and W are two minimal enclosures
contained in R, such that the decomposition of V + W into a sum of minimal
enclosures is unique, then PV ρ PW = PW ρ PV = 0, i.e. with the notation of
Proposition 5.2 one has ρC = ρ ′

C
= 0.

Proof : If V and W are minimal enclosures in R, then, by Proposition 5.3, they
are the supports of extremal invariant states ρV and ρW . Because the decomposition
of V + W into minimal enclosures is unique, ρV and ρW are the unique extremal
invariant states of 8|(V+W). Since the set of invariant states is convex, then by the
Krein–Milman theorem, ρ is a convex combination of ρV and ρW , so ρC and ρ ′

C

must be zero. �

REMARK 6.1. Consider the quantum channel 8 associated with a Markov chain
as in Example 2.1. It is a simple observation that a minimal enclosure for 8 is
necessarily of the form V = ℓ2(C) for C a minimal communication class for the
Markov chain (where ℓ2(C) is viewed as a subspace of ℓ2(E)). Therefore, two
distinct minimal enclosures V1 and V2 are necessarily orthogonal, decompositions into
sums of minimal enclosures are unique, and any invariant state on H = ℓ2(V1 +V2)
is a convex combination of the extremal invariant states ρ1, ρ2 with supports ℓ2(V1),
ℓ2(V2), respectively.

A second result will allow us to describe more explicitly the situation where the
decomposition into minimal enclosures is not unique, and describe the associated
invariant states.

PROPOSITION 6.2. Let V1 and V2 be two minimal enclosures contained in R.
Assume that the decomposition of V = V1 +V2 in a direct sum of minimal enclosures
is not unique. Then dim V1 = dim V2. If, in addition, V1 ⊥ V2 (as can be chosen
by Lemma 5.1) then there exists a partial isometry Q from V1 to V2 satisfying

Q∗Q = Id|V1
, QQ∗ = Id|V2

, (6.1)

and for any ρ in I1(H), and R = QPV1
+ Q∗PV2

,

R 8(ρ) PVi
+ PVi

8(ρ) R = 8
(
R ρ PVi

+ PVi
ρ R

)
for i = 1, 2. (6.2)

Proof : By Lemma 6.1, there exists a minimal enclosure W in V1 +V2 such that
W 6⊥ Vi , i = 1, 2. If V1 ∩W⊥ = {0} then by minimality of V1, we have V1 ⊂ W⊥,
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a contradiction. Therefore V1 ⊂ W , and dimV1 ≤ dimW ; by symmetry one has
dimV1 = dimW .

Assume now that V1 ⊥ V2. Define the map 8∗
R

as in the proof of Proposition 5.3.
By Remark 3.2, if E = V1, V2 or W , then PE is (up to multiplication) the unique
invariant of the restriction 8∗

E of 8∗
R

to B(E). Consider the decomposition of PW =(
A B∗
B C

)
in the splitting V = V1 ⊕V2, where necessarily B 6= 0. A simple consequence

of Proposition 5.2 is that in the same decomposition, 8∗
R

(PW) =
(

8∗
R

(A) 8∗
R

(B)∗

8∗
R

(B) 8∗
R

(C)

)
.

Therefore A is proportional to PV1
and C to PV2

. Writing relations P = P ∗ = P 2

satisfied by PW , one sees that B must be proportional to an operator Q satisfying
relations (6.1). Fix Q; for θ ∈ [0, π], the operator defined by

Pθ =
(

cos2 θ sin θ cos θ Q∗

sin θ cos θ Q sin2 θ

)

is an orthogonal projection preserved by the map 8∗
R

. So its range is an enclosure
and, by point 3 of Proposition 5.2, Pθ will satisfy the relation

8(Pθ ρ Pθ ) = Pθ 8(ρ) Pθ ,

for any ρ in I1(H). Differentiating this relation with respect to θ , we have

8

(
dPθ

dθ
ρ Pθ + Pθ ρ

dPθ

dθ

)
=

dPθ

dθ
8(ρ) Pθ + Pθ 8(ρ)

dPθ

dθ
.

Computing the derivatives at θ = 0 and θ = π/2, we obtain relations (6.2). �

COROLLARY 6.1. Assume that V = V1 + V2 where V1 and V2 are mutually
orthogonal minimal enclosures, contained in R, but that the decomposition of V

into a direct sum of minimal enclosures is nonunique. For i = 1, 2 let ρ inv
i be the

unique invariant state with support in Vi . Consider Q the partial isometry defined
in Proposition 6.2. Then ρ inv

2 = Q ρ inv
1 Q∗.

If ρ is an invariant state with support in V , then:
• PV1

ρ PV1
is proportional to ρ inv

1 ,

• PV2
ρ PV2

is proportional to ρ inv
2 ,

• PV1
ρ PV2

is proportional to ρ inv
1 Q∗ = Q∗ρ inv

2 ,

• PV2
ρ PV1

is proportional to ρ inv
2 Q = Qρ inv

1 .

Proof : The first identity is obtained by applying relation (6.2) to ρ = ρ inv
1

with P1, then applying it again to the resulting relation, this time with P2.
That each ρi,j = PVi

ρPVj
is an invariant is an immediate consequence of

Proposition 5.2. The relation satisfied by ρ1,2 and ρ2,1 is then obtained by applying
relation (6.2) to e.g. ρ1,2, with P1 or P2. �

7. Irreducible decompositions of quantum channels and invariant states

We are now in a position to state the relevant decomposition associated with 8.
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PROPOSITION 7.1. Let 8 be a quantum channel on a separable Hilbert space H.
There exists a decomposition of H in the form

H = D +
∑

α∈A

Vα +
∑

β∈B

∑

γ∈Cβ

Vβ,γ , (7.1)

where any set A, B,Cβ is at most countable, any Cβ has cardinality at least two,
and:

• every Vα or Vβ,γ in this decomposition is a minimal enclosure,

• for β in B, any minimal enclosure that is not orthogonal to
∑

γ∈Cβ
Vβ,γ is

contained in
∑

γ∈Cβ
Vβ,γ ,

• any two distinct subspaces D, Vα, Vβ,γ are mutually orthogonal.

Notice that the sets A and B above can be empty, but they are simultaneously
empty only when 8 does not admit any invariant state.

Proof : We start with the orthogonal decomposition H = D +R, and proceed to
decompose R, when it is not trivial. Consider the set of all minimal enclosures V

with the property that any minimal enclosure different from V is orthogonal to V .
By separability, this set is at most countable. Then we can denote all such minimal
enclosures by Vα, with α in a (countable) set of indices A. Let O be the direct sum
of all these enclosures, O =

∑
α∈A Vα. Then O is an enclosure, and, by point 2 of

Proposition 5.2, R ∩ O⊥ is also an enclosure.
Assume that R ∩ O⊥ is nontrivial; we proceed to decompose it. Let β(1) = 1

and consider a minimal enclosure Vβ(1),1 ⊂ R ∩ O⊥. By the definition of O, there

exists a minimal enclosure V2 in R ∩ O⊥, and by Lemma 5.1 we can choose
Vβ(1),2 minimal, orthogonal to V1, and such that Vβ(1),1 + Vβ(1),2 = Vβ(1),1 + V2.
If all minimal enclosures are either included in Vβ(1),1 + Vβ(1),2 or orthogonal to
Vβ(1),1 + Vβ(1),2, we set Cβ(1) = {1, 2}. Otherwise, we call V3 a minimal enclosure
not included in and not orthogonal to Vβ(1),1 +Vβ(1),2. By Lemma 5.1 we can choose
Vβ(1),3 minimal, orthogonal to Vβ(1),1 + Vβ(1),2 and such that

Vβ(1),1 + Vβ(1),2 + Vβ(1),3 = Vβ(1),1 + Vβ(1),2 + V3,

and we proceed again with the same method for a denumerable number of steps

so that we construct Cβ(1). If R ∩ O⊥ ∩
(∑

γ∈Cβ(1)
Eβ(1),γ

)⊥ 6= {0}, we can iterate

the procedure. �

Before we state our next result, let us give some notation. We fix a decomposition
(7.1) as considered in Proposition 7.1. We define

P0 = PR⊥, Pi = PVi
for i ∈ A or i ∈

⋃
β∈B{β} × Cβ,

and, for a state ρ, and i, j taking the values 0, α ∈ A or (β, γ ) ∈
⋃

β∈B {β} × Cβ ,

ρi = Pi ρ Pi, ρi,j = Pi ρ Pj . (7.2)

As before, we denote by ρ inv
i the unique invariant state of 8|Vi

.
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We can now state the following result.

THEOREM 7.1. Let ρ be a 8-invariant state and consider a related orthogonal
decomposition of the form (7.1). With the notation (7.2), we have

1. ρ0 = 0,

2. every ρi is proportional to ρ inv
i , for all indices i ∈ A ∪

⋃
β∈B{β} × Cβ ,

3. for γ 6= γ ′ in Cβ , the off-diagonal term ρ((β,γ ),(β,γ ′)), which we simply denote
by ρ(β,γ,γ ′), may be nonzero, and is 8-invariant. In addition, there exists
a partial isometry Q(β,γ,γ ′) from Vβ,γ to Vβ,γ ′ such that:

• ρ inv
(β,γ ′) = Q(β,γ,γ ′) ρ inv

(β,γ ) Q∗
(β,γ,γ ′),

• ρ(β,γ,γ ′) is proportional to Q∗
(β,γ,γ ′) ρ inv

(β,γ ′) = ρ inv
(β,γ ) Q∗

(β,γ,γ ′),

4. all other ρi,j (for i, j taking all possible values in {0} ∪ A ∪
⋃

β∈B{β} × Cβ)
are zero.

Proof : This follows from a repeated application of Propositions 5.2 and 7.1, and
Corollary 6.1. �

REMARK 7.1. The decomposition of an invariant state ρ given by Theorem 7.1
can be rewritten in the same form as in formula (12) of Theorem 7 in [3], or as
in Theorem 22 of [14], by simple algebraic manipulations. The key object is an
isomorphism between Vβ,1 ⊗ C

Cβ and
∑

γ∈Cβ
Vβ,γ for each β, given by

E(u ⊗ x) =
∑

γ∈Cβ

uγ Q(β,1,γ )x for u = (uγ )γ∈Cβ
.

REMARK 7.2. The representation of invariant states appearing in Theorem 7.1
has recently been studied in [14], where an analogous result is proven in infinite
dimension (and in the continuous time setting, but this point is not crucial). Our
techniques and starting points are completely different and essentially replicate the
approach used in [3] and [11]. Concerning the orthogonal decomposition and the
representation of invariant states, however, our result is more general than the one in
[14, Theorem 2.1], since we do not need to assume the atomicity of the decoherence
free algebra (notice that the existence of a faithful normal invariant state assumed
in [14] is not a restriction, since our decomposition is anyway only for the fast
recurrent subspace R, and by Remark 5.1, the restriction of 8 to R has a faithful
invariant state). The key step which allows us to avoid this additional assumption is
that we can prove that the fixed point algebra F(8∗

R
) is atomic. When there exists

a faithful invariant state, this means that F(8∗) is atomic. However, we do not
know whether the decoherence free algebra (see [14]), usually denoted by N (8∗),
is atomic, neither can we so far deduce other generalizations of the results on the
structure of this algebra studied in [14].
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8. Examples

Even though our proofs do carry over to infinite dimension, the mechanisms
behind the decompositions of quantum channels are the same for finite- and infinite-
dimensional systems. Due to the lack of space, we consider mostly finite-dimensional
examples.

EXAMPLE 8.1 (classical Markov chains). Consider as in Example 2.1 a Markov
chain on a countable set E. Denote by (Cα)α∈A the family of minimal communication
classes Cα such that the Markov chain has an invariant probability π (α) with support
Cα, by R = ∪α∈ACα the (disjoint) union of these classes, and by D the complement
D = E \ R. Then, according to the discussion in Remark 6.1, the decomposition
(7.1) of H = ℓ2(E) is given by

H = D +
∑

α∈A

Vα where D = ℓ2(D), Vα = ℓ2(Cα)

and any invariant state on H is a convex combination of the extremal states, which

are of the form
∑

i∈Cα
π

(α)
i |ei〉〈ei |.

EXAMPLE 8.2. Consider the quantum channel defined in Example 4.1. From the
computations in Example 4.1, one has R = C e1 and therefore D = C e2.

EXAMPLE 8.3 (2 × 2 matrices). Consider H = C
2 and 8 a positive quantum

map on the algebra B(C2), which we identify with the set M2(C) of 2 × 2 matrices
and equiped with the scalar product 〈x, y〉M2

= tr(x∗y). The Pauli matrices

σ0 =
1

√
2

Id
C2, σ1 =

1
√

2

(
0 1

1 0

)
, σ2 =

1
√

2

(
0 −i

i 0

)
, σ3 =

1
√

2

(
1 0

0 −1

)

form an orthonormal basis of M2(C) and satisfy

σ 2
k = σ 2

0 , σkσj = −σjσk, σjσk = iσℓ,

if (j, k, ℓ) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
It is easy to see that, since 8 is trace preserving and positive, its matrix in the

basis {σ0, σ1, σ2, σ3} is of the form

8 =
(

1 t0

b A

)
(8.1)

where b ∈ R
3, t0 = (0, 0, 0), A is a 3 × 3 matrix with real coefficients. The map 8

is positive if and only if ‖b + Ax‖ ≤ 1 for all x such that ‖x‖ ≤ 1 (see [9] for
more details, even if in the continuous time setting).

It is well known that states on C
2 are all operators of the form ρ = σ0 + u · σ

with u in R
3, ‖u‖ ≤ 1 (here we use the standard notation u · σ =

∑
i=1,2,3 ui σi).

This is called the Bloch sphere representation. In addition, it is easy to see that
a state ρ = σ0 + u · σ is invariant for 8 if and only if b + Au − u = 0.
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Essentially, the problem of decomposing R into minimal enclosures is reduced
to solving the linear system b + Au − u = 0, and then considering if there exist
solutions with ‖u‖ = 1 and how many they are. However, by the Markov–Kakutani
theorem (see [22]), an invariant state always exists. For the decomposition of the
fast recurrent space R, only 3 different cases are possible.

• There exists a unique invariant state ρ. Then the only minimal enclosure in
R is R itself and it has dimension 2 when ρ is faithful and 1 otherwise.

• There exist infinitely many invariant states, and they are given by all convex
combinations of two extremal invariant states ρ1 and ρ2. Then R can be
written in a unique way as the direct sum of two minimal enclosures, which
are the supports of ρ1 and ρ2.

• There exist infinitely many extremal invariant states. Then any state is invariant,
any one dimensional subspace is an enclosure, and R can be written as
R = C e1 ⊕C e2, for any two linearly independent vectors e1, e2 in C

2. This
third case is possible if and only if 8 is the identity operator.

EXAMPLE 8.4. Define V = N∪ {0}, h = C
3, H = h⊗ ℓ2(V ) and fix a canonical

basis (ek)k=1,2,3 of h so that we represent matrices and vectors in this basis. Choose
p, q > 0 such that p < 1/2, p + q < 1 and a family of operators (Li,j )i,j∈V on h

such that Lij = 0 when |i − j | ≥ 2, L00 =
√

1 − p Idh, Lj+1,j = √
p Idh for j ≥ 0

and

Lj−1,j =




√
1 − p 0 0

0
√

1 − p 0

0 0
√

q


 for j ≥ 1,

Lj,j =
√

(1 − p − q)

2




0 0 1

0 0 1

0 0 0


 for j ≥ 1.

We have
∑

i∈V L∗
i,jLij = Id for all j in V , so that the map 8 acting on I1(H)

defined by

8(ρ) =
∑

i,j∈V

(Li,j ⊗ |i〉〈j |) ρ (L∗
i,j ⊗ |j 〉〈i|),

is a quantum channel. This map 8 is an open quantum random walk with transition
operators (Li,j )i,j∈V as defined in [2]. Denote by (|j〉)j∈V the canonical basis of

ℓ2(V ). It was proved in [11] that minimal enclosures for open quantum random walks
are generated by vectors of the form u ⊗ |i〉. Consider therefore u = t(u1, u2, u3)
in h, then

Enc(u ⊗ |i〉) =





span{u ⊗ |j 〉, j ≥ 0}, if u3 = 0,

span{e3 ⊗ |j 〉, (e1 + e2) ⊗ |j 〉, j ≥ 0}, if u3 6= 0, u1 = u2

H, if u3 6= 0, u1 6= u2.
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The enclosures described in the first case (u3 = 0) are the minimal ones and so
they support the extremal invariant states of the evolution. Using finite difference
equations as for similar classical Markov chains, one can compute these extremal
invariant states,

ρ(u) = c
∑

j≥0

(
p

1 − p

)j

|u〉〈u| ⊗ |j 〉〈j |,

for u = t(u1, u2, 0) 6= 0 and a normalizing constant c.

Then we have R = span {e1, e2} ⊗ ℓ2(V ), D = span {e3} ⊗ ℓ2(V ) and the
decomposition (7.1) can be written with A empty, B consisting of only one
element β, Cβ = {1, 2},

Vβ,1 = span{v1 ⊗ |j 〉, j ≥ 0}, Vβ,2 = span{v2 ⊗ |j 〉, j ≥ 0},

for any linearly independent vectors v1 and v2 orthogonal to e3. We observe that
ρ inv

β,1 = ρ(e1) is the only invariant state with support E = span{e1 ⊗ |j〉, j ≥ 0} and,

defining Q as |e2〉〈e1|, that any invariant state has a decomposition

ρ =
(

t ρ(e1) λ ρ(e1)Q
∗

λ̄ Qρ(e1) (1 − t) Qρ(e1)Q
∗

)
with t ∈ [0, 1].

Using the previous expressions for enclosures, one can also deduce the communication
classes, in particular for the vectors of the form u⊗|j 〉, which are the most interesting
in the special case of open quantum random walks.
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The quantum stochastic Schrödinger equation or Hudson–Parthasarathy (HP) equation is

a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop

the theory of measurements in continuous time via the construction of output fields. An important

feature of such an equation is that it allows to treat not only absorption and emission of quanta,

but also scattering processes, which however had very few applications in physical modelling.

Moreover, recent developments have shown that also some non-Markovian dynamics can be

generated by suitable choices of the state of the quantum noises involved in the HP-equation.

This paper is devoted to an application involving these two features, non-Markovianity and

scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting

a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that

this process needs the scattering part of the HP-equation to be described. On the other side,

non-Markovianity is introduced by the dissipation due to the interaction with some thermal

environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum,

and by the introduction of phase noise in the laser beam. Finally, we study the full power

spectrum of the reflected light and we show how the laser beam can be used as a temperature

probe.

Keywords: quantum optomechanics, quantum stochastic differential equations, radiation pressure

interaction, quantum Langevin equations, heterodyne detection.

1. Introduction

Quantum optomechanical systems represent an active field of research, very
important both from the theoretical and experimental point of views, with applications
in quantum optics and quantum information [1–6]. A great interest is due to the
possibility of seeing quantum effects in a macroscopic mechanical resonator, say
a mirror mounted on a vibrating structure and coupled to optical elements by
radiation pressure. Typically, the theoretical description of such a kind of systems is
based on the quantum Langevin equations [7, 8], a flexible approach allowing also

*Also: Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, and Istituto Nazionale di Alta

Matematica (INDAM-GNAMPA).
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for the introduction of non-Markovian effects. Recently, some experimental evidence
of non-Markovian effects in an optomechanical system has been reported [9].

To get mathematically consistent quantum Langevin equations one has to use the
quantum stochastic calculus and the quantum stochastic Schrödinger equation, or
Hudson–Parthasarathy equation (HP-equation) [10, 11]. In this mathematical context
the quantum Langevin equations appear under the name of Evans-Hudson flows or
quantum flows [11–13]. In [14] a description of a dissipative mechanical oscillator has
been obtained in terms of quantum stochastic differential equations; this description
is fully consistent and valid at any temperature and it respects some symmetry
requirements and physical constraints such as a weak form of equipartition at
equilibrium and the translation invariance of the dissipative part of the dynamics.
Non-Markovian effects have been introduced by a suitable choice of the state of the
quantum noises appearing in the HP-equation. In Section 2 the quantum stochastic
model of a dissipative mechanical oscillator is presented. An equation of Hudson–
Parthasarathy type gives the unitary dynamics of the oscillator interacting with a Bose
field (here representing the phonon field). The evolution equations for the system
operators in the Heisenberg picture are the quantum Langevin equations and a suitable
choice of the state of the field (based on a field analog of the P -representation in the
case of discrete modes) allows for the introduction of thermal, non-Markovian effects.

Usual quantum Langevin equations allow to describe absorption and emission of
energy quanta by the main system, not scattering processes. As a matter of fact it
seems that the existing literature takes into account the mirror/light radiation pressure
interaction only if mediated by cavity modes; indeed the subject is often called
cavity optmechanics [4, 6]. This is due to the fact that some interesting physical
phenomena as laser cooling appear when a cavity mode is involved [3–6, 14], but
also to the fact that a way to describe at a quantum level the direct scattering of
laser light by a vibrating mirror is lacking. In this respect, another advantage of the
HP-equation is that it allows also for the description of scattering processes [15,16].
Section 3 introduces, into the HP-equation describing the mechanical oscillator, the
radiation pressure interaction due to a laser directly illuminating the mirror. Finally,
in Section 4, we show how to describe the heterodyne detection of the reflected
light and we study the properties of the resulting power spectrum; this last step
involves also the theory of measurements in continuous time [17–22]. In particular
we show that, for a weak probe laser, the model produces explicit expressions for
the spectrum due to elastic scattering of the photons and for the side-bands due to
Stokes and anti-Stokes scattering.

We end this introduction by recalling the HP-equation and some related notions.
We give a short, heuristic presentation; a mathematically rigourous formulation
of quantum stochastic calculus, HP-equations and related notions can be found

in [11, 12, 19, 21, 23]. Firstly, we introduce the formal fields bk(t), b
†
k(t), t ∈ R,

k = 1 . . . d, satisfying the canonical commutation rules (CCRs)
[
bi(s), b

†
k(t)

]
= δikδ(t − s), [bi(s), bk(t)] = 0. (1)
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In this paper we consider only the representation of the CCRs (1) on the Fock space,
the one characterized by the existence of the vacuum state. For quantum stochastic
calculus involving non-Fock representations see, for instance, [24]. Let us introduce
the Hilbert space L2(R)⊗C

d = L2(R;Cd) (the one-particle space) and its symmetrized
powers L2(R;Cd)⊗sn (the n-particle space). We denote by Ŵ ≡ Ŵ

(
L2(R;Cd)

)
the

symmetric Fock space over L2(R;Cd), i.e. Ŵ = C⊕
∑∞

n=1 L
2(R;Cd)⊗sn, and by ψ(f ),

f ∈ L2(R;Cd), the coherent vectors, whose components in the 0, 1, . . . , n, . . .
particle spaces are

ψ(f ) := e−
1
2

‖f ‖2 (
1, f, (2!)−1/2f ⊗ f, . . . , (n!)−1/2f ⊗n, . . .

)
. (2)

Note that ψ(0) represents the vacuum state and that

〈ψ(g)|ψ(f )〉 = exp

{
−

1

2
‖f ‖2 −

1

2
‖g‖2 + 〈g|f 〉

}
.

Let {zk, k ≥ 1} be the canonical basis in C
d and for any f ∈ L2(R;Cd) let us set

fk(t) := 〈zk|f (t)〉Cd . Then we have bk(t) ψ(f ) = fk(t) ψ(f ). By formally writing

Bk(t) =
∫ t

0

bk(s)ds, B
†
k (t) =

∫ t

0

b
†
k(s)ds, (3)

we get the annihilation and creation processes, families of mutually adjoint operators,
whose actions on the coherent vectors are given by

Bk(t) ψ(f ) =
∫ t

0

fk(s) ds ψ(f ), 〈ψ(g)|B†
k (t)ψ(f )〉 =

∫ t

0

gk(s) ds 〈ψ(g)|ψ(f )〉;

the overline denotes the complex conjugation. By a property of Fock spaces, the
action on the coherent vectors uniquely determines a densely defined linear operator.
In terms of the integrated processes the CCRs (1) become

[Bk(t), B†
l (s)] = δkl min{t, s}, [B†

k (t), B
†
l (s)] = [Bk(t), Bl(s)] = 0. (4)

We introduce also the gauge processes

3kl(t) =
∫ t

0

b
†
k(s)bl(s)ds, 〈ψ(g)|3kl(t)ψ(f )〉 =

∫ t

0

gk(s) fl(s)ds 〈ψ(g)|ψ(f )〉.
(5)

The operator 3kk(t) turns out to be a number operator and it counts the quanta
present in the field k in the time interval (0, t). Quantum stochastic calculus is

an Itô type calculus with respect to the integrators dt , dBk(t), dB
†
k (t), d3kl(t)

satisfying the Itô product rules

dBk(t)dB
†
l (t) = δkldt, dBi(t)d3kl(t) = δikdBl(t),

d3kl(t)dB
†
i (t) = δlidB

†
k (t), d3kl(t)d3ij (t) = δlid3kj (t);

(6)

all the other possible products vanish. We shall need also the generalized Weyl
operators W(g;V ), where g ∈ L2(R;Cd) and V is a unitary operator on L2(R;Cd);
these are unitary operators defined by
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W(g;V )ψ(f ) = exp {i Im〈Vf |g〉}ψ(Vf + g), ∀f ∈ L2(R;Cd). (7)

From the definition one obtains the composition law

W(h;V )W(g;U) = exp {−i Im〈h|Vg〉}W(h+ Vg;VU). (8)

In the case V = 1, it is possible to show that

W(g;1) = exp

{ d∑

k=1

(∫ +∞

−∞
gk(t)dB

†
k (t)− h.c.

)}
,

where h.c. means Hermitian conjugate, and from (7) one sees that W(g;1) is the
field analogue of what is called a displacement operator in quantum optics [22].
Instead, in the case g = 0 in (7), we get that W(0;V ) is the second quantization
of the one-particle unitary operator V [11, p. 136].

Let us introduce now a quantum system with separable Hilbert space H; let
H , Rk, Skl be the system operators with H self-adjoint and the operator matrix
(Skl) defining a unitary operator S on H ⊗C

d . Then, we consider the system/field
evolution equation given by the HP-equation

dU(t) =
{∑

k

Rk dB
†
k (t)+

∑

kl

(Skl − δkl) d3kl(t)

−
∑

kl

R
†
kSkl dBl(t)−

(
1

2

∑

k

R
†
kRk + iH

)
dt

}
U(t), (9)

with the initial condition U(0) = 1. When H and Rk are bounded operators there is
a unique solution, which is unitary and strongly continuous in t [11]. When these
operators are unbounded some restrictions are needed in order to control the domains;
then, the existence, uniqueness, unitarity can be proved [12,23]. The solution U(t)
gives the evolution in the interaction picture with respect to the free evolution of
the field, which is modelled by the so-called left time shift 2(t) in the Fock space;

indeed, Û (t) = 2(t)U(t), t ≥ 0, and Û (t) = U(−t)†2(−t)†, t < 0, defines a strongly
continuous unitary group, whose Hamiltonian has been characterized in [25].

If we now consider a generic system operator X, its evolution in the Heisenberg
description is given by X(t) = U(t)†XU(t). By differentiating this product according
to the rules of quantum stochastic calculus, summarized by (6), and taking into
account that U(t) is a unitary operator, we get the quantum Langevin equations

dX(t) =
(
i[H(t),X(t)] −

1

2

∑

k

(
Rk(t)

†[Rk(t), X(t)] + [X(t), Rk(t)†]Rk(t)
))
dt

+
∑

kl

Slk(t)
†[X(t), Rl(t)]dB†

k (t)−
∑

kl

[X(t), Rl(t)†]Slk(t)dBk(t)

+
∑

kl

(∑

j

Sjk(t)
†X(t)Sj l(t)− δkl

)
d3kl(t). (10)
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If ρ0 is a generic statistical operator for the system and σ a field state, we can
consider the reduced state of the system ρ(t) = TrŴ

{
U(t) (ρ0 ⊗ σ)U(t)†

}
. When

σ is the vacuum state or, more generally, a coherent vector, then the reduced
system state ρ(t) satisfies a Markovian master equation [11, 19] with a Lindblad
type generator [26]. If a more general state is taken for σ , non-Markov effects
enter into play and a simple closed evolution equation for the reduced dynamics
could even not exist [18, 19, 27].

Also the fields in the Heisenberg picture can be introduced [28]; these are the
output fields

Bout
k (t) =U(t)†Bk(t)U(t), B

out †
k (t) = U(t)†B

†
k (t)U(t),

3out
kl (t) = U(t)†3kl(t)U(t).

(11)

The outputs fields represent the fields after the interaction with the system, while

Bk(t), B
†
k (t), 3kl(t) are the fields before the interaction and, so, they are called

input fields. By differentiating the products defining the output fields and using (9)
and (6), we get the input/output relations [19]

dBout
k (t) =

∑

l

Skl(t)dBk(t)+ Rk(t)dt, (12)

d3out
kl (t) =

∑

ij

Ski(t)
†Slj (t)d3ij (t)+

∑

i

Ski(t)
†Rl(t)dB

†
i (t)

+
∑

i

Rk(t)
†Sli(t)dBi(t)+ Rk(t)

†Rl(t)dt. (13)

By the properties of U(t) we get U(T )†Bk(t)U(T ) = U(t)†Bk(t)U(t), ∀T ≥ t , and
similar equations for the other fields. This implies that the output fields satisfy
the same CCRs as the input fields. Self-adjoint combinations of the output fields
commuting for different times represent field observables which can be measured
with continuity in time and this is the key ingredient for a quantum theory of
measurements in continuous time [17, 19, 21].

2. Langevin equations for a mechanical oscillator in a thermal bath

In this section we present the description of a quantum dissipative mechanical
oscillator obtained in [14, Sections 2, 3]. The Hilbert space of the system is
H = L2(R) and q and p denote the usual position and momentum operators in
dimensionless units, satisfying the commutation relations [q, p] = i. We denote by
�m > 0 the bare frequency of the mechanical oscillator and by γm > 0 its damping
rate; we consider only the underdamped case: �m > γm/2. Then, we introduce the
damped frequency ωm and the phase factor τ by

ωm =
√
� 2

m −
γ 2

m

4
, τ =

ωm

�m

−
i

2

γm

�m

. (14)
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We define now the mode operator

am =

√
�m

2ωm

(q + iτp) =
1

√
2ωm�m

(
�mq +

γm

2
p + iωmp

)
, (15)

satisfying the commutation rules [am, a
†
m] = 1. The inverse transformation turns out

to be

q =

√
�m

2ωm

(
τ am + τa†

m

)
, p = i

√
�m

2ωm

(
a†

m − am

)
. (16)

We need also the self-adjoint operator

Hm =
h̄�m

2

(
p2 + q2

)
+
h̄γm

4
{q, p} = h̄ωm

(
a†

mam +
1

2

)
. (17)

We introduce now the HP-equation for a mechanical oscillator in a thermal bath
by taking in (9) a single field B1(t) ≡ Bth(t) and H = Hm, R1 = √

γm am, S = 1.
By (10) the quantum Langevin equations for am, q, p turn out to be

dam(t) = −
(
iωm +

γm

2

)
am(t)dt −

√
γm dBth(t), (18)

dq(t) = �mp(t)dt + dCq(t), (19a)

dp(t) = −
(
�mq(t)+ γmp(t)

)
dt + dCp(t), (19b)

in which we have introduced the Hermitian quantum noises

Cq(t) = −

√
γm�m

2ωm

(
τ Bth(t)+ τB

†
th(t)

)
, Cp(t) = i

√
γm�m

2ωm

(
Bth(t)− B

†
th(t)

)
.

(20)
By (4) the new noises obey the commutation rules

[
Cq(t), Cp(s)

]
= iγm min{t, s},

[
Cq(t), Cq(s)

]
=
[
Cp(t), Cp(s)

]
= 0. (21)

Obviously, from (15), (16) we have that Eq. (18) for am is equivalent to the system
(19) for q and p. By construction, due to the unitarity of U(t), the commutation
relations for the system operators are preserved; also a direct verification is possible
by showing that the quantum stochastic differential of [q(t), p(t)] vanishes due to
(21). Our choice of the field state will be such that the mean values of the noises
Cq(t), Cp(t) are vanishing and this gives that the evolution equations for the mean
values of q and p coming from (19) are exactly the classical equations for an
underdamped oscillator. This fact is a first justification of the choice (17) for the
Hamiltonian and of the unusual connection (16) of position and momentum with
the mode operator.

2.1. The field state

As field state we take the mixture of coherent states

σ Tth = E[|ψ(fT )〉〈ψ(fT )|], fT (s) = 1(0,T )(s)f (s), (22)
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where f is a complex stochastic process with locally square integrable trajectories
and E denotes the expectation with respect to the probability law of the process f .
In the argument of a coherent vector only square integrable functions are allowed,
while the trajectories of the process f are only locally square integrable. So,
we have introduced the cutoff T , representing a large time, which we will let
tend to infinity in the final formulae describing the quantities of direct physical
interest. As explained in [14, Section 3.2.1] this is a field analog of the regular
P -representation for the case of discrete modes [7]. In quantum optics, mixtures
of coherent vectors with respect to probability measures are interpreted as classical
states. For nonclassical states signed measures are needed.

To represent the phonon bath [14] we take f to be a complex Gaussian stationary
stochastic process with vanishing mean, E[f (t)] = 0, and correlation functions

E[f (t) f (s)] = 0, E[f (t) f (s)] =: F(t − s). (23)

Thanks to stationarity, the function F(t) is positive definite, so that according to
Bochner’s theorem its Fourier transform

N(ν) =
∫ +∞

−∞
e−iνtF(t) dt (24)

is a positive function, which we assume to be absolutely integrable, thus implying
a finite power spectral density for the process. The function N(ν) will play the
role of thermal noise spectrum.

By this choice of the state we get that the noises (20) have vanishing means
and symmetrized quantum correlations given by

∂2

∂t∂s
〈{Cq(t), Cq(s)}〉 =

∂2

∂t∂s
〈{Cp(t), Cp(s)}〉 = γm

�m

ωm

[δ(t − s)+ 2 ReF(t − s)] ,

(25)
∂2

∂t∂s
〈{Cq(t), Cp(s)}〉 = 2γm ImF(t − s)−

γ 2
m

2ωm

[δ(t − s)+ 2 ReF(t − s)] , (26)

where 〈{Ci(t), Cj (s)}〉 := limT→+∞ TrŴ({Ci(t), Cj (s)}σ Tth ). Let us stress that the
noises appearing in the system (19) cannot be arbitrary. First of all the quantum
Langevin equations are Heisenberg equations of motion for a unitary dynamics
(even if an approximated dynamics) and unitarity implies the conservation of all
commutation relations. So, the noises in (19) have to guarantee the preservation of
the commutation relations [q(t), p(t)] = i, ∀t ≥ 0, [7, Chapters 1, 3] by satisfying
themselves suitable commutations relations (Eqs. (21) in our case). Moreover, their
symmetrized correlations must be compatible with their commutators; indeed, by
identifying the index q with 1 and p with 2, we must have the positivity condition

2∑

i,j=1

∫ T

0

dt

∫ T

0

ds hi(t) hj (s)
∂2

∂t∂s
〈{Ci(t), Cj (s)} + [Ci(t), Cj (s)]〉 ≥ 0, ∀T > 0,

for all choices of the test functions hi(t). Also this property is true in our case
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because our noises and their correlations are an exact consequence of a unitary
model and of the choice of a well defined state. This is not true in other proposals,
where the positivity property above is not satisfied or divergences are introduced
by ill-defined approximations; see the discussion in [14, Section 3.3].

2.2. The reduced state of the mechanical oscillator

Let ρ0 be the initial state of the oscillator. It is easy to see that the random re-
duced state TrŴ{U(t) (ρ0 ⊗ |ψ(fT )〉〈ψ(fT )|) U(t)†} satisfies an usual quantum master
equation with random coefficients. But this is not true for its mean, the reduced
state

ρ(t) = TrŴ{U(t)ρ0 ⊗ σ TthU(t)
†}, 0 ≤ t < T .

By the properties of HP-equation there is no dependence on T as long as T ≥ t .
In any case it is possible to characterize the equilibrium state of the system by
solving the linear quantum Langevin equations (19) and computing the first two
moments of q(t) and p(t) for t → +∞. The reduced equilibrium state

ρeq = lim
t→+∞

lim
T→+∞

TrŴ
{
U(t)

(
ρ0 ⊗ σ Tth

)
U(t)†

}

turns out [14] to be a Gaussian state with 〈q〉eq = 〈p〉eq = 0 and

〈q2〉eq = 〈p2〉eq =
�m

ωm

(
Neff +

1

2

)
, 〈{q, p}〉eq = −

γm

ωm

(
Neff +

1

2

)
, (27)

where

Neff :=
γm

2π

∫

R

N(ν)

γ 2
m
4

+ (ωm − ν)2
dν. (28)

An important property of our model is that the energy equipartition in the mean

holds: h̄�m
2

〈q2〉eq = h̄�m
2

〈p2〉eq. Moreover, the mean of the Hamiltonian (17) turns
out to be

〈Hm〉eq = h̄ωm

(
Neff +

1

2

)
.

3. Radiation pressure interaction

We consider now the case of a mirror mounted on a vibrating structure and directly
illuminated by a laser, so that it is subject to a radiation pressure force. One has to add
a further interaction term into the HP-equation suitable to produce a force proportional
to the photon flux in equation (19b) for p. If we consider a well-collimated laser
beam and a perfect mirror, it is possible to represent the light by a single ray
impinging on the mirror and reflected according to the laws of geometrical optics.
So, we take d = 2 and B1(t) ≡ Bth(t), H = Hm, R1 = √

γm am, S11 = 1 as before;
moreover, we add a further field B2(t) ≡ Bem(t), representing the electromagnetic
field, and we write 3em(t) = 322(t). A force proportional to the rate of photon
arrivals means to have a term vd3em(t) in (19b); v is a coupling constant depending
on the mirror/light coupling and the incidence angle. By comparing this expression
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with (10) with X = p, one sees that we need S22 ≡ S = eiφeivq and S12 = S21 = 0,
R2 = 0; φ is a phase shift introduced by the mirror. So, the final HP-equation is

dU(t) =
{
−
i

h̄
Hmdt +

√
γm

(
amdB

†
th(t)− a†

mdBth(t)
)

+ (S − 1) d3em(t)−
γm

2
a†

mamdt

}
U(t), (29)

S = eiφeivq, v ∈ R, φ ∈ [0, 2π), U(0) = 1.

From (10) one gets the relevant quantum Langevin equations

dam(t) = −
(
iωm +

γm

2

)
am(t)dt −

√
γm dBth(t)+ iτv

√
�m

2ωm

d3em(t), (30)

or, equivalently,

dq(t) = �mp(t)dt + dCq(t), (31a)

dp(t) = − (�mq(t)+ γmp(t)) dt + dCp(t)+ vd3em(t). (31b)

The quantum noises Cq(t) and Cp(t) are given by (20). The linearity of such
equations allows for an explicit solution

am(t) = e−(iωm+ γm
2 )tam − √

γm

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s)

+ iτv

√
�m

2ωm

∫ t

0

e−(iωm+ γm
2 )(t−s)d3em(s), (32)

leading for the position and momentum Heisenberg operators to

q(t) = e−γmt/2

(
q cosωmt +

γmq + 2�mp

2ωm

sinωmt

)

−

√
�mγm

2ωm

{
τ

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s)+ h.c.

}

+
�mv

ωm

∫ t

0

e−
γm
2
(t−s) sinωm (t − s) d3em(s), (33)

p(t) = e−γmt/2

(
p cosωmt −

2�mq + γmp

2ωm

sinωmt

)

+

√
�mγm

2ωm

{
i

∫ t

0

e−(iωm+ γm
2 )(t−s)dBth(s)+ h.c.

}

+ v

∫ t

0

e−
γm
2
(t−s)

(
cosωm (t − s)−

γm

2ωm

sinωm (t − s)

)
d3em(s). (34)
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3.1. Input-output relations

We now consider the Heisenberg picture for the electromagnetic component of
the field:

Bout
em (t) = U(t)†Bem(t)U(t), 3out

em(t) = U(t)†3em(t)U(t). (35)

By (12), (13) we get the input-output relations

dBout
em (t) = S(t)dBem(t) = eivq(t)+iφdBem(t), (36)

d3out
em(t) = S(t)†S(t)d3em(t) = d3em(t). (37)

Note that the number operator for the photons is not changed by the interaction
with the mirror.

By using (33) the scattering operator can be decomposed as the product

S(t) = eivq(t)+iφ = S0(t)Wth(ℓt ;1)Wem(0;V (t)), (38)

where a system operator and two generalized Weyl operators appear:

S0(t) = eiφ exp

{
ive−γmt/2

(
q cosωmt +

γmq + 2�mp

2ωm

sinωmt

)}
t→+∞−→ eiφ, (39)

Wth(ℓt ;1) = exp

{∫ +∞

0

ℓt(s)dB
†
th(s)− h.c.

}
, (40)

Wem(0;V (t)) = exp

{
i
�mv

2

ωm

∫ t

0

e−
γm
2
(t−s) sinωm (t − s) d3em(s)

}
, (41)

with

ℓt(•) = −ivτ

√
�mγm

2ωm

1(0,t)(•)e(iωm− γm
2 )(t−•), (42)

(
V (t)u

)
(s) = V (s; t)u(s), ∀u ∈ L2(R),

V (s; t) = exp
{
iv2h(t − s)1(0,t)(s)

}
, h(r) =

�m

ωm

e−
γm
2
r sinωmr.

(43)

The Weyl operator Wth(ℓt ;1) (40) is a displacement operator with function ℓt (42)
acting on the thermal component, while Wem(0;V (t)) (41) is the second quantization
of the unitary operator V (t) (43) and it acts only on the electromagnetic component.

3.2. The field state

Now the environment is described by a two-component field and its state must
describe the phonon bath and the laser light. As the field state we take the mixture
of coherent states

σ Tenv = E[|ψ(uT )〉〈ψ(uT )|], uT (s) = 1(0,T )(s)u(s), u(s) =
(
f (s)

g(s)

)
, (44)

where f is the stochastic process described in Section 2.1 and g describes a phase-
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diffusion model of a laser [18], namely

g(t) = λe
−i
(
ω0t+

√
Lp W(t)

)

, λ ∈ C, ω0 > 0, Lp > 0;
W(t) is a standard Wiener process independent from the process f . It is easy to
see that

lim
T→+∞

[∣∣∣∣
1

√
T

∫ T

0

eiµtg(t)dt

∣∣∣∣
2]

=
|λ|2 Lp

L 2
p

4
+ (µ− ω0)

2
;

so, the laser light has carrier frequency ω0 and Lorentzian spectrum of width Lp.
A possible generalization would be to replace the constant λ by a further stochastic
process λ(t). This would allow to describe also amplitude fluctuations.

With this choice of the state, for the thermal noises Cq and Cp we have vanishing
means and symmetrized correlations (25), (26), while for the electromagnetic field
we get

Tr
{
dBem(t)σ

T
env

}
= λe

−
(
iω0+Lp

2

)
t
dt, Tr

{
d3em(t)σ

T
env

}
= |λ|2 dt, (45)

Tr
{
dB†

em(s)dBem(t)σ
T
env

}
= |λ|2 e−iω0(t−s)−

Lp
2

|t−s|dt ds, (46)

Tr
{
d3em(s) d3em(t)σ

T
env

}
=
[
δ(t − s)+ |λ|2

]
|λ|2 dtds. (47)

3.3. The equilibrium state of the mechanical oscillator

Again, we can introduce the reduced state of the mechanical oscillator

ρ(t) = TrŴ{U(t)
(
ρ0 ⊗ σ Tenv

)
U(t)†}, 0 ≤ t < T ,

and the reduced equilibrium state

ρeq = lim
t→+∞

lim
T→+∞

TrŴ
{
U(t)

(
ρ0 ⊗ σ Tenv

)
U(t)†

}
.

By working in the Heisenberg picture, from (32)–(34) and the moments of the fields
we get easily

〈p〉eq = 0, 〈q〉eq =
v |λ|2

�m

=: q∞, 〈{q, p}〉eq = −
γm

ωm

(
Neff +

1

2

)
, (48)

〈q2〉eq − q2
∞ = 〈p2〉eq =

�m

ωm

(
Neff +

1

2

)
+

|λ|2 v2

2γm

, (49)

where Neff is given by (28). By (49) the energy equipartition in mean holds again
for the fluctuation part. Moreover, the mechanical mode occupancy is given by

〈a†
mam〉eq −

�mq
2
∞

2ωm

= Neff +
�mv

2 |λ|2

2ωmγm

;

we have also

〈a 2
m〉eq −

�mq
2
∞

2ωm

=
|λ|2 v2

4ωm�m

(γm

2
+ iωm

)
= iτ

|λ|2 v2

4ωm

.
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Finally, it is possible to show that in the limiting case of constant phonon
spectrum, i.e. N(ν) → Neff, and no phase diffusion, i.e. Lp ↓ 0, the reduced system
state satisfies a Markovian master equation with the Liouville operator

L[ρ] = −
i

h̄
[Hm, ρ] + γm (Neff + 1)

(
amρa

†
m −

1

2

{
a†

mam, ρ
})

+ γmNeff

(
a†

mρam −
1

2

{
ama

†
m, ρ

})
+ |λ|2

(
eivqρe−ivq − ρ

)
.

The last term is new and describes the momentum kicks due to the scattering of
photons. The other terms of the Liouville operator have the appearance of an usual
generator for the dynamics of a mode in a thermal bath; however, the important
point is that the link of the mode operator with the position and momentum is not
the usual one, but it is given by (15), (16) [14, Section 2.2].

4. Heterodyne detection

To get information on the mechanical oscillator we can detect in various ways
and analyse the light reflected by the vibrating mirror. In the balanced heterodyne
detection scheme the light coming from our system is made to beat with a strong
laser field (the local oscillator). The light impinging on the mirror and the local
oscillator are produced by different laser sources; the stimulating laser frequency ω0

and the local oscillator frequency, say µ, are in general different. Moreover, the
phase difference cannot be maintained stable and this erases some interference terms.
It can be shown [19, Section 3.5] that the balanced heterodyne detection scheme
corresponds to the measurement in continuous time of the observables

I (µ; t) =
∫ t

0

√
̹ e−̹(t−s)/2 eiµs+iα dBem(s)+ h.c., (50)

where α is a phase depending on the optical paths and
√
̹ e−̹t/2, ̹ > 0, represents

the detector response function. In the Heisenberg description the observables become
the “output current”

Iout(µ; t) = U(t)†I (µ; t)U(t). (51)

By using (36) we obtain the explicit expression

Iout(µ; t) = J (t)+ h.c., J (t) =
√
̹ ei(α+φ)

∫ t

0

e−
̹
2
(t−s)+iµseivq(s)dBem(s). (52)

By the definition of I (µ; t) and the properties of U(t) (see the discussion at the end
of Section 1) we get [I (µ; t), I (µ; s)] = [Iout(µ; t), Iout(µ; s)] = 0, which says that
the output current at time t and the current at time s are compatible observables.
Note that to change µ means to change the frequency of the local oscillator, that
is to change the measuring apparatus. In general Iout(µ; t) and Iout(µ

′; s) do not
commute, even for t = s.

By the rules of quantum mechanics, once one has the commuting observables
Iout(µ; t), t ≥ 0, and the system/field state ρ0 ⊗ σ Tenv, the probability law of the
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stochastic process representing the output of the detection apparatus is obtained
[17,19]. By taking the second moment of the output current the mean output power
is obtained [14, 19], and at large times it turns out to be proportional to

P(µ) = lim
T→+∞

1

T

∫ T

0

〈Iout(µ; t)2〉T dt, 〈•〉T := Tr
{
• ρ0 ⊗ σ Tenv

}
; (53)

the limit is in the sense of the distributions in µ. As a function of µ, P(µ) is
known as power spectrum.

By using directly (53), (51), (50), (37), without computing the explicit expression
of P(µ), one gets easily the “total output power”

1

2π

∫

R

dµ [P(µ)− 1] = 2 |λ|2 . (54)

For the sake of comparison it is interesting to have also the power spectrum of the
input light,

Pin(µ) = lim
T→+∞

1

T

∫ T

0

〈I (µ; t)2〉T dt = 1 +
2 |λ|2 κ

κ2

4
+ (µ− ω0)

2
, κ := ̹ + Lp; (55)

the final explicit expression in (55) is easily computed by using (46) and the CCRs.
Moreover, we have immediately

1

2π

∫

R

dµ [Pin(µ)− 1] = 2 |λ|2 . (56)

Let us stress that the equality of the total input and output powers is essentially
due to (37).

4.1. Exact results

The explicit expression of the power spectrum can be computed, as we shall
show below. Firstly, (53) reduces to

P(µ) = 1 + 2 lim
T→+∞

1

T

∫ T

0

〈J (t)†J (t)〉T dt; (57)

then, we obtain

P(µ) = 1 + 4 |λ|2 exp

{
2 |λ|2 Re

∫ +∞

0

du
(
eiv

2h(u) − 1
)

−
(
Neff + 1

2

)
�m

ωm

v2

}

× Re

∫ +∞

0

dt e(i(µ−ω0)− κ
2 )t exp

{
|λ|2

∫ +∞

0

ds
[
eiv

2h(t+s) − 1
] [
e−iv

2h(s) − 1
]

+
∫

R

dν
�mγmv

2
[
(N(ν)+ 1) eiνt +N(ν)e−iνt

]

4πωm

(
γ 2

m
4

+ (ν − ωm)
2
)

}
, (58)
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where h(t) is given in (43) and κ = ̹+Lp. Let us stress that this is an exact result
obtained from a unitary quantum evolution and the monitoring in continuous time of
commuting observables. Note that in this expression the thermal contributions (the
terms containing N(ν)), and the electromagnetic contributions (the terms containing
the function h), are completely interlaced.

4.1.1. Proof of Eqs. (57) and (58)

Let us sketch now the proof of the previous formulae. By (52) we have

〈Iout(µ; t)2〉T = 2 Re〈J (t)2〉T + 〈J (t)J (t)†〉T + 〈J (t)†J (t)〉T .
By the presence of the limit in (53), these terms contribute to P(µ) only with their
large time behaviour. By using (36), (38)–(43), (46) we get

〈J (t)2〉T ≃ ̹λ2e2i(α+φ)
∫ t

0

ds

∫ t

0

dr e−̹(t−
s+r

2 )+i(µ−ω0)(s+r)−
Lp
2

|s−r|−2Lp(s∧r)

× V (s; r)〈Wth(ℓs;1)Wth(ℓr;1)〉T 〈Wem

(
0;V (s)

)
Wem

(
0;V (r)

)
〉T ,

〈J (t)†J (t)〉T ≃ 2̹ |λ|2 Re

∫ t

0

ds

∫ s

0

dr e−̹(t−
s+r

2 )+i(µ−ω0)(s−r)−
Lp
2
(s−r)

× 〈Wth(ℓr;1)†Wth(ℓs;1)〉T 〈Wem

(
0;V (r)

)†
Wem

(
0;V (s)

)
〉T , (59)

〈J (t)J (t)†〉T − 1 ≃ 2̹ |λ|2 Re

∫ t

0

ds

∫ s

0

dr V (r; s)e−̹(t−
s+r

2 )+i(µ−ω0)(s−r)−
Lp
2
(s−r)

× 〈Wth(ℓs;1)Wth(ℓr;1)†〉〈Wem

(
0;V (s)

)
Wem

(
0;V (r)

)†〉T .

Then, one can check that limt→+∞ limT→+∞〈J (t)2〉T = 0. Moreover, by using the
composition law (8) for generalized Weyl operators and (42), (43), we get

Wem

(
0;V (s)

)
Wem

(
0;V (r)

)† = Wem

(
0;V (r)

)†
Wem

(
0;V (s)

)

and, for s, r large and s > r ,

V (r; s)Wth(ℓs;1)Wth(ℓr;1)† = V (r; s)Wth(ℓr;1)†Wth(ℓs;1) exp {2i Im〈ℓs |ℓr〉}
≃ Wth(ℓr;1)†Wth(ℓs;1).

This gives 〈J (t)J (t)†〉T ≃ 1 + 〈J (t)†J (t)〉T and, so, (57) is proved.
Let us consider now (59); recall that h(u) and V (s, t) are given in (43) and

ℓt(s) in (42). Firstly, the electromagnetic contribution gives, for s > r ,

〈Wem

(
0;V (r)

)†
Wem

(
0;V (s)

)
〉T = exp

{∫ s

0

(
V (u; r) V (u; s)− 1

)
|λ|2 du

}

= a(s) a(r) exp

{
|λ|2

∫ r

0

du
[
eiv

2h(s−u) − 1
] [
e−iv

2h(r−u) − 1
]}

≃ |a(∞)|2 exp

{
|λ|2

∫ r

0

du
[
eiv

2h(s−u) − 1
] [
e−iv

2h(r−u) − 1
]}
,
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with

a(s) = exp

{
|λ|2

∫ s

0

du
(
eiv

2h(u) − 1
)}
.

Then, again for s > r and both large, the thermal contribution gives

〈Wth(ℓr;1)†Wth(ℓs;1)〉T = E

[
exp

{
2i Im〈f |ℓs − ℓr〉 + 〈ℓr |ℓs〉 −

‖ℓs‖2 + ‖ℓr‖2

2

}]

= exp

{
−

1

2

(∫ s

0

|ℓs(u)|2 du+
∫ r

0

|ℓr(u)|2 du
)

+
∫ r

0

ℓr(u) ℓs(u)du

−
1

2π

∫

R

dν N(ν)

∣∣∣∣
∫ s

0

du eiuν
(
ℓs(u)− ℓr(u)

)∣∣∣∣
2}

≃ exp

{
−(

2Neff + 1)�mv
2

2ωm

+
�mv

2

2ωm

e(iωm− γm
2 )(s−r) +

∫

R

dν
�mγmN(ν)v

2 cos ν(s − r)

2πωm

(
γ 2

m
4

+ (ωm − ν)2
)
}

= exp

{
−(

2Neff + 1)�mv
2

2ωm

+
∫

R

dν
�mγmv

2
[
(N(ν)+ 1) eiν(s−r) +N(ν)e−iν(s−r)

]

4πωm

(
γ 2

m
4

+ (ωm − ν)2
)

}
.

By inserting these results into (59) and the expression found into (57), we get the
final result (58).

4.2. Linear response

When the laser light is used as a probe to get information on the dissipative
oscillator, the beam can be taken to be weak, which means |λ|2 is small. In this
case only the linear response is important and we can simplify (58) by considering
only the “optical susceptibility”

6(µ) := lim
|λ|↓0

P(µ)− 1

|λ|2
.

By (58) the weak probe limit gives immediately

6(µ) = 4 exp

{
−
(
Neff + 1

2

)
�m

ωm

v2

}
Re

∫ +∞

0

dt e(i(µ−ω0)− κ
2 )t

× exp

{∫

R

dν
�mγmv

2
[
(N(ν)+ 1) eiνt +N(ν)e−iνt

]

4πωm

(
γ 2

m
4

+ (ν − ωm)
2
)

}
. (60)

Now, the power spectrum is

P(µ) ≃ 1 + |λ|26(µ) (61)
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and we see that in this limit the thermal contribution is completely unaffected
by the electromagnetic one. So, we can use the optical probe as a mean to gain
information on the mechanical occupancy spectrum N(ν).

To compute the time integral in (60) one needs to develop the last exponential
in a power series. The result is much more clear when N(ν) is slowly varying in
a neighbourhood of ωm of width γm. In this case we can make the approximation
N(ν) ≃ N(ωm) in the last line of (60); by (28) we have also Neff ≃ N(ωm). By
power expansion we get

6(µ) ≃ 4 exp

{
−
(
N(ωm)+ 1

2

)
�m

ωm

v2

}
Re

∫ +∞

0

dt e(i(µ−ω0)− κ
2 )t

× exp

{
�mv

2

2ωm

[
(N(ωm)+ 1) e(iωm− γm

2 )t +N(ωm)e
−(iωm+ γm

2 )t
]}

= 2 exp

{
−
(
N(ωm)+ 1

2

)
�m

ωm

v2

}

×
∞∑

m=0

m∑

j=0

�m
m v

2m

j !(m− j)!2mωmm

(
N(ωm)+ 1

)j
N(ωm)

m−j (κ +mγm)

(κ+mγm)
2

4
+ [µ− ω0 − (m− 2j) ωm]2

. (62)

So, 6(µ) appears to be a series of peaks centred on ω0 ± nωm and we write

6(µ) ≃ 2 exp

{
−
(
N(ωm)+ 1

2

)
�m

ωm

v2

}∑

n∈Z
5n(µ). (63)

By reorganizing the sums we get the expressions of the various peaks and by
integration their weights.

• The peak centred in ω0,

50(µ) =
∞∑

j=0

�
2j
m v

4j
(
N(ωm)+ 1

)j
N(ωm)

j (κ + 2jγm)

(j !)2 4jω
2j
m

[
(κ+2jγm)

2

4
+ (µ− ω0)

2
] ; (64)

here the term with j = 0 represents the elastic scattering of photons, while
a term with j > 0 represents the scattering of a photon with exchange with
the mechanical oscillator of j energy quanta ωm. The weight of the peak is

1

2π

∫

R

50(µ)dµ =
∞∑

j=0

1

(j !)2

(
� 2

mv
4
(
N(ωm)+ 1

)
N(ωm)

4ω 2
m

)j
. (65)

For N(ωm) = 0 the previous formulae reduce to

50(µ) =
κ

κ2

4
+ (µ− ω0)

2
,

1

2π

∫

R

50(µ)dµ = 1. (66)
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• The peaks centred in ω0 − nωm, n = 1, 2, . . ., (Stokes scattering),

5−n(µ) =
∞∑

j=0

�
2j+n
m v4j+2n

(
N(ωm)+ 1

)j+n
N(ωm)

j
(
κ + (2j + n) γm

)

j !(j + n)!22j+nω
2j+n
m

[
(κ+(2j+n)γm)2

4
+ (µ− ω0 + nωm)

2
] ; (67)

here the term with j = 0 represents the cession of a quantum ωm from the
photon to the mechanical oscillator, while a term with j > 0 represents the
same process plus the exchange of other j quanta. The weight is

1

2π

∫

R

5−n(µ)dµ =
(
N(ωm)+ 1

)n ∞∑

j=0

�
2j+n
m v4j+2n

(
N(ωm)+ 1

)j
N(ωm)

j

j !(j + n)!22j+nω
2j+n
m

.

(68)
For N(ωm) = 0 we get

5−n(µ) =
� n

mv
2n
(
κ + nγm

)

n!2nω nm
[
(κ+nγm)2

4
+ (µ− ω0 + nωm)

2
] , (69)

1

2π

∫

R

5−n(µ)dµ =
� n

mv
2n

n!2nω nm
. (70)

• The peaks centred in ω0 + nωm, n = 1, 2, . . ., (anti-Stokes scattering),

5n(µ) =
∞∑

j=0

�
2j+n
m v4j+2n

(
N(ωm)+ 1

)j
N(ωm)

j+n(κ + (2j + n) γm

)

j !(j + n)!22j+nω
2j+n
m

[
(κ+(2j+n)γm)2

4
+ (µ− ω0 − nωm)

2
] , (71)

here the term with j = 0 represents the cession of a quantum ωm from the
mechanical oscillator to the photon, while a term with j > 0 represents the
same process plus the exchange of other j quanta. Note that the weight turns
out to be

1

2π

∫

R

5n(µ)dµ =
(

N(ωm)

N(ωm)+ 1

)n
1

2π

∫

R

5−n(µ)dµ. (72)

For N(ωm) = 0 we get 5n(µ) = 0.

The asymmetry between Stokes and anti-Stokes scattering is the base for using
the optical probe as a device for thermometry at low temperatures. Indeed, we have

N(ωm) =
∫
R
51(µ)dµ∫

R
5−1(µ)dµ−

∫
R
51(µ)dµ

(73)

and this quantity can be estimated by the area under the curve of the experimental
data when the peaks in ω0 ± ωm are well separated from the elastic peak in
ω0, which means that the widths γm and κ = ̹ + Lp are sufficiently small. The
resolved-sideband thermometry is a technique already used in somewhat similar
situations [4, 6].
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We study nonequilibrium statistical mechanics of a Gaussian dynamical system and compute

in closed form the large deviation functionals describing the fluctuations of the entropy production

observable with respect to the reference state and the nonequilibrium steady state. The entropy

production observable of this model is an unbounded function on the phase space, and its large

deviation functionals have a surprisingly rich structure. We explore this structure in some detail.
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1. Introduction

In this paper, we prove and elaborate the results announced in Section 9 of [23].
We consider a dynamical system described by a real separable Hilbert space K

and the equation of motion

d

dt
xt = Lxt , x0 ∈ K, (1)

where L is a bounded linear operator on K. Let D be a strictly positive bounded
symmetric operator on K and (X, ωD) the Gaussian random field over K with zero
mean value and covariance D. Eq. (1) induces a flow φL = {φt

L
} on X, and our

[335]
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starting point is the dynamical system (X, φL, ωD) (its detailed construction is given
in Section 2.1). We compute in closed form and under minimal regularity assumptions
the nonequilibrium characteristics of this model by exploiting its Gaussian nature.
In particular, we discuss the existence of a nonequilibrium steady state (NESS),
compute the steady state entropy production, and study the large deviations of the
entropy production observable w.r.t. both the reference state ωD and the NESS. To
emphasize the minimal mathematical structure behind the results, in the main body
of the paper we have adopted an abstract axiomatic presentation. In Section 3,
the results are illustrated on the example of the one-dimensional harmonic crystal.
For additional information and a pedagogical introduction to the theory of entropic
fluctuations in classical nonequilibrium statistical mechanics, we refer the reader to
the reviews [23, 27].

There are very few models for which the large deviation functionals of the entropy
production observable can be computed in a closed form, and we hope that our results
may serve as a guide for future studies. In addition, an important characteristic of
a Gaussian dynamical system is that its entropy production observable is an unbounded
function on the phase space. This unboundedness has dramatic effects on the form and
regularity properties of the large deviation functionals that require modifications of
the celebrated fluctuation relations [12, 13, 15, 16]. Although this topic has received
a considerable attention in the physics literature [1, 2, 6, 14, 19, 30–32], to the best
of our knowledge, it has not been studied in the mathematically rigorous literature
on the subject. Thus, another goal of this paper is to initiate a research program
dealing with mathematical theory of extended fluctuation relations in nonequilibrium
statistical mechanics, which emerge when some of the usual regularity assumptions
(such as compactness of the phase space, boundedness of the entropy production
observable, smoothness of the time reversal map) are not satisfied.

The paper is organized as follows. In Section 2.1 we introduce Gaussian dynamical
systems. In Section 2.2 we define the entropy production observable and describe
its basic properties. In Section 2.3 we introduce the NESS. Our main results are
stated in Sections 2.4 and 2.5. The entropy production observable is defined as the
phase space contraction rate of the reference measure ωD under the flow φL, and
in Section 2.6 we examine the effects of a perturbation of the reference measure
on the large deviation theory. In Section 3 we illustrate our results on two classes
of examples, toy models and harmonic chains. The proofs are given in Section 4.

The focus of this paper is the mathematics of the large deviation theory of
the entropy production observable. The physical implications of our results will be
discussed in the continuation of this paper [24].

2. The model and results

2.1. Gaussian dynamical systems

In order to setup our notation, we start with some basic facts about classical
Gaussian dynamical systems. We refer the reader to [9] for a more detailed
introduction to this subject.
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Let Ŵ be a countably infinite set and

X = {x = (xn)n∈Ŵ | xn ∈ R} = R
Ŵ.

For x ∈ X and I ⊂ Ŵ, we denote xI = (xi)i∈I ∈ R
I . Let l = (ln)n∈Ŵ be a given

sequence of strictly positive numbers such that
∑

n∈Ŵ ln = 1 (we shall call such
a sequence a weight). Then

d(x, y) =
∑

n∈Ŵ
ln

|xn − yn|
1 + |xn − yn|

is a metric on X and (X, d) is a complete separable metric space. Its Borel σ -algebra
F is generated by the set of all cylinders

CI (B) = {x ∈ X | xI ∈ B},
where I ⊂ Ŵ is finite and B ⊂ R

I is a Borel set.

Let ν and ω be two Borel probability measures on X. We shall write ν ≪ ω when
ν is absolutely continuous w.r.t. ω. The corresponding Radon–Nikodym derivative is
denoted by

1ν|ω =
dν

dω
.

We will also use the notation1

ℓν|ω = log1ν|ω.

The two measures ν and ω are called equivalent, denoted ν ≃ ω, if they are
mutually absolutely continuous, i.e. ω ≪ ν and ν ≪ ω. We adopt the shorthand
ν(f ) =

∫
X
f dν. The relative entropy of ν w.r.t. ω is defined as

Ent(ν|ω) =
{

−ν(ℓν|ω) if ν ≪ ω,

−∞ otherwise.
(2)

We recall that Ent(ν|ω) ≤ 0, with equality iff ν = ω. For α ∈ R, the relative Rényi
α-entropy of ν w.r.t. ω is defined as

Entα(ν|ω) =
{

logω
(
eαℓν|ω

)
if ν ≪ ω,

−∞ otherwise.

We denote by K ⊂ X the real Hilbert space with inner product

(x, y) =
∑

n∈Ŵ
xnyn, (3)

i.e. K = ℓ2
R
(Ŵ). The matrix elements of a linear operator A on ℓ2

R
(Ŵ) w.r.t. its

standard basis are denoted by Anm.

1Throughout the paper we adopt the convention log x = −∞ for x ≤ 0.
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Let Xl,X
∗
l ⊂ X be real Hilbert spaces with respective inner products

(x, y)l =
∑

n∈Ŵ
lnxnyn, (x, y)l∗ =

∑

n∈Ŵ
l−1
n xnyn,

(X∗
l is the dual of Xl w.r.t. the duality (3)). Clearly,

X
∗
l ⊂ K ⊂ Xl ⊂ X,

with continuous and dense inclusions. All the measures on (X,F) we will consider
here will be concentrated on Xl .

Let D be a bounded, strictly positive operator on K. The centered Gaussian
measure of covariance D on (X,F) is the unique Borel probability measure ωD
specified by its value on cylinders

ωD(CI (B)) =
1

√
det(2πDI )

∫

B

e−
1
2
(x,D−1

I
x)dx,

where DI = [Dij ]i,j∈I . The measure ωD is also uniquely specified by its characteristic
function

X
∗
l ∋ y 7→ χ(y) =

∫

X

ei(y,x) dωD(x) = e−(y,Dy)/2.

The bound ∫

X

‖x‖2
l dωD(x) =

∫

X

∑

n∈Ŵ
lnx

2
n dωD(x) =

∑

n∈Ŵ
lnDnn ≤ ‖D‖, (4)

implies that ωD(X \ Xl) = 0, i.e., that ωD is concentrated on Xl .

Let T be the real vector space of all trace class operators on K and ‖T ‖1 =
tr((T ∗T )1/2) the trace norm on T . The pair (T , ‖ · ‖1) is a real Banach space. By
the Feldman–Hajek–Shale theorem, two Gaussian measures ωD1

and ωD2
on (X,F)

are equivalent iff T = D−1
2 −D−1

1 ∈ T . In this case, one has

1ωD2
|ωD1

(x) =
√

det(I +D1T ) e
−(x,T x)/2, (5)

Ent(ωD2
|ωD1

) =
1

2
tr
(
D1T (I +D1T )

−1
)
−

1

2
log det (I +D1T ) .

Note that det (I +D1T ) = det
(
I +D

1/2

1 TD
1/2

1

)
= det(D

1/2

1 D−1
2 D

1/2

1 ) > 0.

Let L be a bounded linear operator on K such that L∗
X

∗
l ⊂ X

∗
l . It follows that

L has a continuous extension to Xl which we also denote by L. For x ∈ X and
t ∈ R we set

φtL(x) =
{
etLx if x ∈ Xl,

x if x 6∈ Xl.
(6)

The map (t, x) 7→ φt
L
(x) is measurable and φL = {φt

L
}t∈R is a group of automorphisms

of the measurable space (X,F) describing the time evolution. We shall call φL the
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dynamics generated by L and (X, φL, ωD) a Gaussian dynamical system. Note that
for ωD-almost all x ∈ X, φt

L
(x) = etLx for all t ∈ R.

We end this section with a simple example of a physical system fitting this
abstract framework. We follow [22] and consider a one-dimensional harmonic crystal.
We shall complete the analysis of this example in Section 3.2.

EXAMPLE 2.1. 3 ⊂ Z, the crystal lattice, is a finite or infinite set of consecutive
integers. The phase space and Hamiltonian of the harmonic crystal are

R
3 ⊕ R

3 = {(p, q) = ({pn}n∈3, {qn}n∈3) |pn, qn ∈ R},

H3(p, q) =
∑

n∈3

(
p2
n

2
+
q2
n

2
+
(qn − qn−1)

2

2

)
,

where we set qn = 0 for n 6∈ 3 (Dirichlet boundary conditions). The Hamilton
equations of motion are (

ṗ

q̇

)
= L3

(
p

q

)
,

where

L3 =
(

0 −j3
13 0

)
,

j3 being the restriction of the finite difference operator

(jq)n = 3qn − qn+1 − qn−1 (7)

to R
3 with Dirichlet boundary condition, and 13 the identity on R

3 (which we shall
later identify with the projection R

Z → R
3). Clearly, for all 3, j3 is a bounded

self-adjoint operator on ℓ2
R
(3) satisfying 1 ≤ j3 ≤ 5.

To fit this model into our abstract framework, we assume that 3 is infinite and
set Ŵ3 = 3×Z2, X3 = R

Ŵ3 = R
3⊕R

3 with the weight sequence l = (ln,i)(n,i)∈Ŵ3 ,

where ln,i = c3(1+n2)−1 and c3 is a normalization constant. One easily verifies that
L∗
3X

∗
3l ⊂ X

∗
3l and that the dynamics of the harmonic crystal is described by the group

etL3 . Let h3 be the self-adjoint operator on K3 = ℓ2
R
(3)⊕ ℓ2

R
(3) associated to the

quadratic form 2H3. Energy conservation implies L∗
3h3 + h3L3 = 0. Equivalently,

the operator L3 defined by

L3 = h
1/2
3 L3h

−1/2
3 =

(
0 −j 1/2

3

j
1/2
3 0

)
,

is skew-adjoint. Since 1 ≤ h3 ≤ 5, this implies in particular that the group etL3 is
uniformly bounded on K3.

2.2. Entropy production observable

Our starting point is the dynamical system (X, φ, ω), where φ is the dynamics
on X generated by L and ω is the centered Gaussian measure with covariance D
(from now on, L and D are fixed, and we shall omit explicit reference to them).
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The measure ω is sometimes called the initial or the reference state of the system.
Observables are measurable functions f : X → C. They evolve according to

ft(x) = f ◦ φt(x).
The expectation of an observable f at time t ∈ R is given by

ωt(f ) = ω(ft) =
∫
ft(x)dω(x),

where ωt = ω ◦ φ−t is the centered Gaussian measure on (X,F) with covariance

Dt = etLDetL
∗
.

Dt is a bounded strictly positive operator on ℓ2
R
(Ŵ) and ωt(Xl) = 1 for all t . By

the Feldman–Hajek–Shale theorem, the two measures ωt and ω are equivalent iff

Tt := D−1
t −D−1 ∈ T . We shall assume more.

(G1) The map R ∋ t 7→ Tt ∈ T is differentiable at t = 0.

As will be seen later, this condition implies that the function t 7→ Tt is
differentiable for all t . The entropy production observable (or phase space contraction
rate) for (X, φ, ω) is defined by

σ(x) =
d

dt
ℓωt |ω(x)

∣∣∣
t=0
, x ∈ K.

A simple computation shows that (cf. (37))

σ(x) = (x, ςx)− tr(Dς), (8)

where

ς = −
1

2

dTt

dt

∣∣∣
t=0
, (9)

and the derivative is understood in the sense of T (in particular, ς ∈ T ). Since T

is continuously embedded in the Banach space of all bounded operators on K, we
have

ς =
1

2
(L∗D−1 +D−1L).

REMARK. If A is a self-adjoint element of T , then the quadratic form (x,Ax)
has a unique extension from K to an element of L1(X, dω). With a slight abuse of
notation, we shall also denote this extension by (x,Ax) (see Lemma 4.1 below for
a more precise statement). Thus, the entropy production observable (8) is a continuous
function on K and an integrable function on X w.r.t. the measure ω.

PROPOSITION 2.1. Suppose that (G1) holds. Then:
(1) The function R ∋ t 7→ σt ∈ L1(X, dω) is continuous.

(2) ℓωt |ω =
∫ t

0
σ−s ds holds as the Riemann integral of a continuous L1(X, dω)-

valued function. It also holds for ω-almost every x ∈ X as the Lebesgue integral
of a real-valued function.
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(3) The function R ∋ t 7→ eℓωt |ω ∈ L1(X, dω) is C1 and

d

dt
eℓωt |ω = eℓωt |ωσ−t . (10)

(4) ωt(σ ) = tr(ς(Dt −D)) and in particular ω(σ) = 0.

(5) Ent(ωt |ω) = −
∫ t

0
ωs(σ )ds.

In specific examples, it may happen that only finitely many matrix elements ςnm
are nonzero, and in this case the map x 7→ σ(x) is continuous on X. The function σ
is bounded only in the trivial case σ = 0. Note that σ = 0 iff ωt = ω for all t ;
this follows, for instance, from the cocycle property (38).

2.3. Nonequilibrium steady state

Our next assumptions are:

(G2) There are some numbers 0 < m < M < ∞ such that m ≤ Dt ≤ M for all
t ∈ R.

(G3) The following strong limits exist:

s - lim
t→±∞

Dt = D±.

It is clear that m ≤ D± ≤ M , and LD± +D±L
∗ = 0. In what follows, we set

δ =
m

M −m
. (11)

REMARK. The verification of Assumptions (G2) and (G3) in concrete models
generally rests on spectral and scattering theoretic arguments. The reader is referred
to [22, Section 1.9] for an example. Note in particular that if Ŵ is a finite
set, then (G2) and (G3) cannot be both satisfied. Indeed, either the spectrum of
the generator L is purely imaginary, or it contains an eigenvalue with nonzero
real part. In the first case, there exists a nonzero u ∈ K such that the function

(u,Dtu) = (etL
∗
u,DetL

∗
u) is periodic. In the second case, Assumption (G2) implies

that for some nonzero u ∈ K and t → ∞

(u, (Dt +D−t)u) ≥ m
(
‖e−tL∗

u‖2 + ‖etL∗
u‖2

)
→ ∞.

In both cases we have a contradiction to Assumption (G3).

Let ω± be the centered Gaussian measure on (X,F) with covariance D±.

PROPOSITION 2.2. Suppose that (G1)–(G3) hold. Then:

(1) For any bounded continuous function f : X → R,

lim
t→±∞

ωt(f ) = ω±(f ).
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(2) σ ∈ L1(X, dω±) and

ω±(σ ) = lim
t→±∞

ωt(σ ) = tr(ς(D± −D)).

Note that

ω+(σ ) = lim
t→∞

1

t

∫ t

0

ωs(σ )ds = − lim
t→∞

1

t
Ent(ωt |ω).

We shall call ω+ the NESS and the nonnegative number ω+(σ ) the entropy
production of (X, φ, ω).

2.4. Entropic fluctuations with respect to the reference state

Time reversal invariance plays an important role in nonequilibrium statistical
mechanics, and in particular in formulation of the fluctuation relations. Hence, we
shall also consider the following hypothesis.

(G4) There exists a unitary involution ϑ : K → K such that ϑ(Xl) ⊂ Xl , ϑL =
−Lϑ , and ϑD = Dϑ .

This assumption implies that D−t = ϑDtϑ for all t ∈ R, and thus D− = ϑD+ϑ
and ω+ = ω− ◦ϑ . Moreover, it follows from definition (9) that ϑς = −ςϑ . This in
turn implies that tr(Dς) = 0 and

σ(x) = (x, ςx), ω+(σ ) = −ω−(σ ). (12)

For simplicity of notation and exposition, we shall state and prove our main results
under the time reversal invariance assumption, which covers the cases of physical
interest. With a minor modifications of the statements and the proofs, most of our
results hold without this assumption. We leave these generalizations to the interested
reader.

The relative Rényi entropy functional, which is defined by

et(α) = Entα(ωt |ω) = logω(eαℓωt |ω), (13)

is a priori finite only for α ∈ [0, 1]. To describe its properties, we introduce the
sets

Jt =
{
α ∈ R |D−1 + αTt > 0

}
, t ∈ R,

and denote by C± the open upper/lower half-plane.

PROPOSITION 2.3. Suppose that (G1), (G2) and (G4) hold. Then:
(1) Jt = (−δt , 1 + δt) for some δt ≥ δ and J−t = Jt .
(2) The function α 7→ et(α) is finite on the interval Jt and is equal to +∞ for

α 6∈ Jt . Moreover, this function is convex, extends to an analytic function on
the cut plane C+ ∪ C− ∪ Jt , and satisfies

et(0) = et(1) = 0, e′t(0) ≤ 0, e′t(1) ≥ 0. (14)

In particular, et(α) ≤ 0 for α ∈ [0, 1] and et(α) ≥ 0 otherwise.
(3) The finite time Evans–Searles symmetry et(α) = et(1 −α) holds for all t and α.
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REMARK. Proposition 2.3 also holds for finite-dimensional Gaussian dynamical
systems (i.e. in cases where the set Ŵ is finite). In particular, the finite time
Evans–Searles symmetry holds for such systems. It is not hard to see that in such
cases Assumption (G2) requires the spectrum of L to be purely imaginary and
semi-simple. Assumption (G3) and the necessity of an infinite-dimensional phase
space only becomes apparent when considering the large-time behaviour of the
system.

We now study the statistical properties of trajectories as t → +∞. The intervals Jt
do not necessarily form a monotone family, and we define the minimal interval

J = lim inf
t→∞

Jt =
⋃

T>0

⋂

t>T

Jt .

Clearly, one has J = (−δ, 1 + δ), where δ = lim inft→∞ δt ≥ δ.

THEOREM 2.1. Suppose that (G1)–(G4) hold.

(1) The limit

e(α) := lim
t→+∞

1

t
et(α) (15)

exists for α ∈ J . Moreover, the function e(α) is convex on the interval J and
satisfies the relations

e(0) = e(1) = 0, e′(0) = −ω+(σ ) ≤ 0,

e′(1) = ω+(σ ) ≥ 0, e(1 − α) = e(α).
(16)

(2) The function e(α) extends to an analytic function on the cut plane C+ ∪C− ∪ J ,
and there is a unique signed Borel measure ν with support contained in R \ J
such that

∫
|r|−1d|ν|(r) < ∞ and

e(α) = −
∫

R

log

(
1 −

α

r

)
dν(r). (17)

(3) The Large Deviation Principle holds in the following form. The function

I (s) = sup
−α∈J

(
αs − e(−α)

)

is convex, takes values in [0,∞], vanishes only at s = ω+(σ ), and satisfies the
Evans–Searles symmetry relation

I (−s) = I (s)+ s for s ∈ R. (18)

Moreover, there is ε > 0 such that, for any open set J ⊂ (−ω+(σ )−ε, ω+(σ )+ε),
we have

lim
t→∞

1

t
logω

({
x ∈ X

∣∣∣∣
1

t

∫ t

0

σs(x) ds ∈ J

})
= − inf

s∈J
I (s). (19)
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(4) The Central Limit Theorem holds. That is, for any Borel set B ⊂ R, we have

lim
t→∞

ω

({
x ∈ X

∣∣∣∣
1

√
t

∫ t

0

(σs(x)− ω+(σ )) ds ∈ B
})

=
∫

B

e−x
2/2a dx

√
2πa

,

where a = e′′(1).
(5) The strong law of large numbers holds. That is, for ω-a.e. x ∈ X, we have

lim
t→∞

1

t

∫ t

0

σs(x) ds = ω+(σ ). (20)

REMARK 1. In general, the two limiting measures ω− and ω+ are distinct. This
property is closely related to the strict positivity of entropy production. In fact,
it follows from the second relation in (12) that if ω− = ω+, then ω+(σ ) = 0 as
well as ω−(σ ) = 0, while any of these two conditions imply that the function e(α)
vanishes on [0, 1] and, hence, identically in view of analyticity.

REMARK 2. The representation of e(α) as a logarithmic potential of a signed
measure is somewhat surprising, and its mathematical and physical significance
remains to be studied in the future. The measure ν is related to the spectral measure
of the operator Q (see the proof of Theorem 2.1 for more details).

Now let {tn} ⊂ R+ be a sequence such that δtn → δ̂. We define Ĵ = (−δ̂, 1 + δ̂).
Note that, by Proposition 2.3 (1), we have δ̂ ≥ δ. In the case when δ̂ coincides

with δ = lim supt→∞ δt , we write J instead of Ĵ .

THEOREM 2.2. Suppose that (G1)–(G4) hold and {tn} ⊂ R+ is a sequence
satisfying the above hypothesis.

(1) Let Q = D
1/2
− (D−1

− −D−1
+ )D

1/2
− . Then

−
1

δ
≤ Q ≤

1

1 + δ
. (21)

Furthermore, since the function g(z) = z−1 log(1−z) is analytic in the cut plane
C \ [1,∞), the operator-valued function

E(α) = −αD1/2
− g(αQ)D

1/2
− , (22)

is analytic in the cut plane C+ ∪ C− ∪ J .

(2) For α ∈ Ĵ , the following relation holds,

ê(α) := lim
n→∞

1

tn
etn(α) = tr(E(α)ς), (23)

and if α ∈ R is not in the closure of Ĵ , then

lim sup
n→∞

1

tn
etn(α) = ∞. (24)

Moreover, the function ê(α) is convex on the interval Ĵ and satisfies relations (16).
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(3) The Large Deviation Principle holds in the following form. The function

Î (s) = sup
−α∈Ĵ

(αs − ê(−α)) (25)

is convex, takes values in [0,∞], vanishes only at s = ω+(σ ), and satisfies the
Evans–Searles symmetry relation (18). Moreover, for any open interval J ⊂ R,
we have

lim
n→∞

1

tn
logω

({
x ∈ X

∣∣∣∣
1

tn

∫ tn

0

σs(x) ds ∈ J

})
= − inf

s∈J
Î (s). (26)

REMARK 1. The functions ê(α) constructed in Theorem 2.2 coincide with e(α)
on the minimal interval J . Moreover, by Part (2) of Theorem 2.2, the functions ê
constructed for different sequences {tn} must coincide on the common domain of
definition.

REMARK 2. If δ = ∞, then ê(α) = e(α) = 0 for α ∈ R.

REMARK 3. The local Large Deviation Principle described in Part (3) of The-
orem 2.1 is an immediate consequence of the local Gärtner-Ellis theorem (see
Appendix A.2 in [22]). The global Large Deviation Principle described in Part (3)
of Theorem 2.2 cannot be deduced from the Gärtner-Ellis theorem. Our proof of
the LDP exploits heavily the Gaussian structure of the model and is motivated by
Exercise 2.3.24 in [10], see also [3, 4, 8] for related results.

2.5. Entropic fluctuations with respect to the NESS

We now turn to the statistical properties of the dynamics under the limiting
measures ω±. In view of the time-reversal invariance (G4), it suffices to study the
case of one of these measures, and we shall restrict ourselves to ω+. Let us set
(cf. Part (2) of Proposition 2.1)

et+(α) = logω+(e
−αℓωt |ω) = logω+

(
e−α

∫ t
0 σ−s ds

)
= logω+

(
e−α

∫ t
0 σs ds

)
,

where the last relation follows from the invariance of ω+ under the flow φt . Note
that, a priori, et+(α) might not be finite for any α 6= 0.

THEOREM 2.3. Suppose that (G1)–(G4) hold. Then:

(1) For any t ∈ R, the function R ∋ α 7→ et+(α) ∈ (−∞,+∞] is convex.
(2) The set

J+
t =

{
α ∈ R |D−1

+ − αTt > 0
}

(27)

is an open interval containing (−δ, δ), and the function et+(α) is real analytic
on J+

t and takes value +∞ on its complement.
(3) Let J+ be the interior of the set

lim inf
t→∞

J+
t =

⋃

T>0

⋂

t>T

J+
t .
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Then J+ is an open interval containing (−δ, δ). Moreover, for α ∈ J+, the limit

e+(α) = lim
t→∞

1

t
et+(α) (28)

exists and defines a real-analytic function on J+. Finally, if α is not in the
closure of J+, then

lim sup
t→∞

1

t
et+(α) = +∞. (29)

(4) The Large Deviation Principle holds in the following form. The function

I+(s) = sup
−α∈J+

(αs − e+(−α))

is convex, takes values in [0,∞], and vanishes only at s = ω+(σ ). Moreover,
there is an open interval I

+ containing ω+(σ ) such that, for any open set
J ⊂ I

+,

lim
t→∞

1

t
logω+

({
x ∈ X

∣∣∣∣
1

t

∫ t

0

σs(x) ds ∈ J

})
= − inf

s∈J
I+(s).

(5) The Central Limit Theorem holds. That is, for any Borel set B ⊂ R,

lim
t→∞

ω+

({
x ∈ X

∣∣∣∣
1

√
t

∫ t

0

(σs(x)− ω+(σ )) ds ∈ B
})

=
∫

B

e−x
2/2a+ dx

√
2πa+

,

where a+ = e′′+(0).
(6) The strong law of large numbers holds. That is, for ω+-a.e. x ∈ X, we have

lim
n→∞

1

t

∫ t

0

σs(x) ds = ω+(σ ).

(7) Let J be as in Theorem 2.1. Then e+(α) = e(α) for α ∈ J+ ∩ J . Moreover,
there is an open interval J

+ ⊂ I
+ such that I+(s) = I (s) for s ∈ J

+.

REMARK. This theorem is a refinement of Proposition 9.5 in [23]. We point
out that parts (1) and (3) of that proposition are inaccurately formulated: in part
(1), the interval (−δ, 1 + δ) has to be replaced with (−δ, δ), while in part (3) the
interval (−〈σ 〉+ − ε, 〈σ 〉+ + ε) has to be replaced with (〈σ 〉+ − ε, 〈σ 〉+ + ε).

Finally, we have the following analogue of Theorem 2.2 on statistical properties
of the dynamics under the limiting measure ω+. Let {tn} ⊂ R+ be an arbitrary
increasing sequence going to +∞ such that the intervals J+

tn defined by (27) converge

to a limiting interval Ĵ+.

THEOREM 2.4. Under the hypotheses of Theorem 2.3 the following assertions
hold.
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(1) For α ∈ Ĵ+, the limit

ê+(α) := lim
n→∞

1

tn
etn+(α) (30)

exists and defines a real-analytic function on Ĵ+. If α does not belong to the

closure of Ĵ+, then

lim sup
n→∞

1

tn
etn+(α) = ∞.

Moreover, ê+(α) and tr(E(α)ς) coincide on their common domain of definition.
(2) The Large Deviation Principle holds in the following form. The function

Î+(s) = sup
−α∈Ĵ+

(αs − ê+(−α))

is convex, takes values in [0,∞] and vanishes only at s = ω+(σ ). Moreover,
for any open interval J ⊂ R, we have

lim
n→∞

1

tn
logω+

({
x ∈ X

∣∣∣∣
1

tn

∫ tn

0

σs(x) ds ∈ J

})
= − inf

s∈J
Î+(s).

The proof of this result is completely similar to that of Theorem 2.2, and
therefore we omit it.

REMARK. Unlike in the case of the Evans–Searles symmetry, there is no a priori

reason why the limiting intervals Ĵ+ should be symmetric around α = 1
2
, and indeed

in all cases we know where Ĵ+ can be computed, this property does not hold. Hence,
the relation ê+(α) = ê+(1 − α) may fail since one side may be finite and the other

infinite, leading to the failure of the Gallavotti–Cohen symmetry Î+(−s) = Î+(s)+s.
The fact that for unbounded entropy production observables the Gallavotti–Cohen
symmetry may fail is known in the physics literature [1, 2, 6, 14, 19, 30–32]. In some
of these works one can also find various prescriptions how the entropy production
observable can be modified so as to restore the Gallavotti–Cohen symmetry. We
shall discuss this topic in the continuation of this paper [24].

2.6. Perturbations

We shall consider the following type of perturbation of the reference state ω.
Let P be a bounded self-adjoint operator on K such that D−1 + P > 0. To avoid
trivialities, we assume that P is not the zero operator. Let

DP = (D−1 + P)−1

and let ωP be the centered Gaussian measure with covariance DP . Obviously,

DP
t = (D−1

t + Pt)
−1,

where Pt = e−tL
∗
Pe−tL. We consider the following two cases, assuming that

(G1)–(G4) hold for D.



348 V. JAKŠIĆ, C.-A. PILLET and A. SHIRIKYAN

Case 1. P is a nonnegative trace class operator such that ϑP = Pϑ , and
s - lim
t→±∞

Pt = 0.

In this case, ωP and ω are equivalent and (G1)–(G4) also hold for DP . Moreover,
using the superscript P to denote the objects associated with the initial measure ωP ,
we easily check that

DP
± = D±, EP (α) = E(α), ςP = ς +

1

2
(L∗P +PL), ωP+(σ

P ) = ω+(σ ),

where we used (22) to derive the second relation. We also see that the functions
eP (α) and e(α) coincide on J ∩ J P . It is possible, however, that J P 6= J and

J+P 6= J+, and in fact the difference could be quite dramatic. Indeed, let us fix
P and consider the perturbation λP for λ > 0. Pick a unit vector ϕ such that
Pϕ = κϕ with κ > 0.

We consider first the case of J λP . One easily sees that for any α > 1,

(ϕ, ((DλP )−1 + αT λPt )ϕ) ≤
α

m
− λ ((α − 1)κ − α(ϕ, Ptϕ)) . (31)

There exists t0 such that for t > t0, (α − 1)κ − α(ϕ, Ptϕ) > (α − 1)κ/2. Hence, for
t > t0 and λ > 2α/κm(α− 1) the right-hand side of (31) is negative which implies
that α > 1 + δλPt . Thus

δλP = lim inf
t→∞

δλPt ≤ α − 1

provided λ > 2α/κm(α − 1). Letting now α ↓ 1 we conclude that

lim
λ→∞

δλP = 0,

and the intervals J λP collapse to [0, 1] in the limit λ → ∞.

To deal with the case of J+λP , we set ψα,t = etLϕ for α > 0 and ψα,t = ϕ for
α < 0. A simple analysis yields

(ψα,t , ((D
λP
+ )−1 − αT λPt )ψα,t) ≤

1 + |α|
m

‖ψα,t‖2 − λ|α|(κ − (ϕ, Ptϕ)).

Repeating the previous argument, one shows that the length of the interval J+λP

goes to zero as λ → ∞, so that the intervals J+λP collapse to {0}.

Case 2. P > 0, ϑP = Pϑ , and Pt = P for all t ∈ R.

Hypotheses (G1)–(G4) again hold for DP , and we have

DP
+ = (D−1

+ + P)−1, ςP = ς, σP = σ.

Replacing P with λP , it is easy to see that δλP , defined by (11), satisfies
limλ→∞ δ

λP = ∞. Since (−δλP , 1 + δλP ) ⊂ J λP and (−δλP , δλP ) ⊂ J+λP , we see

that the intervals J λP and J+λP extend to the whole real line in the limit λ → ∞.
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3. Examples

3.1. A toy model

Suppose that the generator L satisfies L∗ = −L, and let ϕ ∈ K be a unit vector
such that the spectral measure for L and ϕ is purely absolutely continuous. Let

D = I + λPϕ,

where Pϕ = (ϕ, · )ϕ and λ > −1. Then Dt = I + λPϕt , where ϕt = etLϕ is
a continuous curve of unit vectors converging weakly to zero as t → +∞. Let
λ± = 1

2
(|λ| ± λ) denote the positive/negative part of λ. One easily verifies that

(G1)–(G3) hold with m = 1 − λ−, M = 1 + λ+ and D± = I , so that

δ =
∣∣∣∣
1

2
+

1

λ

∣∣∣∣−
1

2
.

Without loss of generality we may assume that (G4) holds.2 Since (I + λPψ)
−1 =

I − λ
1+λPψ for any unit vector ψ and any λ 6= −1, we have

D−1 + αTt = I −
λ

1 + λ

(
(1 − α)Pϕ + αPϕt

)
,

D−1
+ − αTt = I −

λ

1 + λ
α
(
Pϕ − Pϕt

)
.

Using the simple fact that for any two linearly independent unit vectors ϕ,ψ and
all a, b ∈ R,

sp(aPϕ + bPψ) = {0} ∪




a + b

2
±

√(
a − b

2

)2

+ ab(ψ, ϕ)2



 ,

one easily shows that

δt =

√
1

4
+

1 + λ

λ2(1 − (ϕ, ϕt)2)
−

1

2
, J+

t =
{
α ∈ R

∣∣∣∣ |α| <
1 + λ

|λ|
√

1 − (ϕ, ϕt)2

}
.

Recalling that (ϕ, ϕt) → 0 as t → +∞ we see that for all λ > −1, δ = δ = δ and
J+ = (−δ+, δ+) where

δ+ =
1 + λ

|λ|
=
{
δ for λ ∈ (−1, 0],
1 + δ for λ ∈ [0,∞).

2That can be always achieved by replacing K with K ⊕ K, L with L ⊕ L∗, ϕ with 1√
2
ϕ ⊕ ϕ, and setting

ϑ(ψ1 ⊕ ψ2) = ψ2 ⊕ ψ1.
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Furthermore, evaluating relations (46) and (86) established below, we obtain

et(α) = − 1
2

log

(
1 +

λ2

1 + λ
α(1 − α)

(
1 − (ϕ, ϕt)

2
))
,

et+(α) = − 1
2

log

(
1 −

λ2

(1 + λ)2
α2
(
1 − (ϕ, ϕt)

2
))
.

It follows that

lim
t→∞

1

t
et(α) =





0 for |α − 1
2
| < 1

2
+ δ,

+∞ for |α − 1
2
| > 1

2
+ δ,

lim
t→∞

1

t
et+(α) =

{
0 for |α| < δ+,

+∞ for |α| > δ+.

Finally, one easily computes the Legendre transforms of these limiting functions,

I (s) = ( 1
2

+ δ)|s| − 1
2
s, I+(s) = δ+|s|.

While the first one satisfies the fluctuation relation, i.e. I (s)+ 1
2
s is an even function,

the second one does not.

3.2. The one-dimensional crystal

We continue the discussion of Example 2.1. Our starting point is harmonic crystal
on 3 = Z and in this case we drop the subscript 3. For our purposes we will
view this crystal as consisting of three parts, the left, central, and right, specified
by

3ℓ = (−∞,−1], 3c = {0}, 3r = [1,∞).

In what follows we adopt the shorthands H3ℓ = Hℓ, h3ℓ = hℓ, j3ℓ = jℓ, etc. Clearly

X = Xℓ ⊕ Xc ⊕ Xr , K = Kℓ ⊕ Kc ⊕ Kr ,

where Ks = ℓ2
R
(3s)⊕ ℓ2

R
(3s) for s = ℓ, c, r , and

H = H0 + Vℓ + Vr ,

where
H0 = Hℓ +Hc +Hr

and Vℓ(p, q) = −q0q−1, Vr(p, q) = −q0q1.
The reference state ω is the centered Gaussian measure with covariance

D = Dℓ ⊕Dc ⊕Dr ,

where

Ds = Ts

(
Is 0

0 j−1
s

)
, s = ℓ, c, r,
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Is is the identity on ℓ2
R
(3s), and Ts > 0. Thus, initially the left/right parts of the

crystal are in thermal equilibrium at temperature Tℓ/r . The Hamiltonian Vℓ/r couples
the left/right parts of the crystal to the oscillator located at the site n = 0 and this
allows for the transfer of the energy/entropy between these two parts. The entropic
fluctuation theorems for this particular Gaussian dynamical system concern statistics
of the energy/entropy flow between the left and right parts of the crystal.

Hypotheses (G1)–(G4) are easily verified following the arguments of Chapter 1
in the lecture notes [22] and one finds that

ω+(σ ) = κ
(Tℓ − Tr)

2

TℓTr
,

where κ = (
√

5 − 1)/2π , and

e(α) = −κ log

(
1 +

(Tℓ − Tr)
2

TℓTr
α(1 − α)

)
. (32)

Note that e(α) is finite on the interval Jo = (−δo, 1 + δo), where

δo =
min(Tℓ, Tr)

|Tℓ − Tr |
, (33)

and takes the value +∞ outside the interval Jo. Note also that δo can take any
value in (0,∞) for appropriate choices of Tℓ, Tr ∈ (0,∞). The measure ν in Part
(2) of Theorem 2.1 is

ν = κD−δo + κD1+δo,

where Da is the Dirac measure centered at a.

We finish this section with several remarks.

REMARK 1. The intervals J , J+ can be strictly smaller then Jo. To see this,
fix Tc, δo, α > 1, and set Tr = (1 + δ−1

o )Tℓ to ensure relation (33). Let ϕ ∈ K be
such that (ϕ, hcϕ) = 1. One has

(ϕ, (D−1 + αTt)ϕ) =
∑

s

1

Ts
((1 − α)(ϕ, hsϕ)+ α(ϕt , hsϕt)) ,

where ϕt = e−tLϕ. Since the skew-adjoint operator L has purely absolutely continuous
spectrum and hc is compact, there exists t0 > 0 such that

(ϕt , hcϕt) = (e−tLh1/2ϕ, h−1/2hch
−1/2e−tLh1/2ϕ) <

α − 1

2α

for all t > t0. Moreover, since the Hamiltonian flow is uniformly bounded there
exists a constant C such that

1

Tℓ/r

(
(1 − α)(ϕ, hℓ/rϕ)+ α(ϕt , hℓ/rϕt)

)
≤ C

α

Tℓ
.
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Summing up, if Tℓ > 4CTcα/(α − 1), then

(ϕ, (D−1 + αTt)ϕ) ≤
1 − α

2Tc
+ 2C

α

Tℓ
< 0,

for all t > t0 and hence δ < α. Thus, in the limit Tℓ → ∞ the interval J collapses
to [0, 1]. In a similar way one can show that in the same limit the interval J+

collapses to {0}. On the other hand, arguing as in the Case 2 of Section 2.6, one
can always take Tℓ/r , Tc → 0 in such a way that in this limit the intervals J , J+

extend to the whole real line.

REMARK 2. Somewhat surprisingly, even in the simplest example of the harmonic
crystal discussed in this section, it appears difficult to effectively estimate the location
of the intervals J , J+ outside of the perturbative regimes. In particular, the subtleties
regarding the location of these sets were overlooked in Sections 1.11, 1.14 and 1.15
of the lecture notes [22]. These difficulties raise many interesting questions and we
leave the complete analysis of these aspects as an open problem.

REMARK 3. An interesting question is whether one can find P such that for the
perturbed reference state ωP as defined in Section 2.6 one has J = Jo. That can
be done as follows. Set βs = 1/Ts , suppose that βr > βℓ and let

P =
(
(βr − βc)1c 0

0 (βr + 2βℓ − 3βc)jc + βℓvℓ + βrvr

)
,

where vℓ/r denotes the self-adjoint operator associated with the quadratic form 2Vℓ/r .
One easily checks that

DP = (βrh−Xh
(N)
ℓ )−1,

where X = βr − βℓ > 0,

h
(N)
ℓ =

(
13ℓ∪3c 0

0 j
(N)
ℓ

)
,

and j
(N)
ℓ denotes the restriction of the operator (7) to R

3ℓ∪3c with Neumann
boundary condition. We are concerned with the interval

J Pt = {α ∈ R | (DP )−1 + αT Pt > 0}.
Since

(DP
t )

−1 = βrh−Xe−tL
∗
h
(N)
ℓ e−tL = h1/2

(
βr −XetLh−1/2h

(N)
ℓ h−1/2e−tL

)
h1/2,

a simple computation gives

(DP )−1 + αT Pt

= h1/2
(
βr − (1 − α)Xh−1/2h

(N)
ℓ h−1/2 − αXetLh−1/2h

(N)
ℓ h−1/2e−tL

)
h1/2,



ENTROPIC FLUCTUATIONS IN GAUSSIAN DYNAMICAL SYSTEMS 353

and hence

J Pt = {α ∈ R |βr/X > (1 − α)h−1/2h
(N)
ℓ h−1/2 + αetLh−1/2h

(N)
ℓ h−1/2e−tL}.

Since βr/X = 1 + δo and
0 ≤ h

(N)
ℓ ≤ h,

we have that for all t ,
(−δo, 1 + δo) ⊂ J Pt .

Thus, limt→∞ δ
P
t = δo and J P = Jo.

REMARK 4. In contrast to Remark 3, we do not know whether there exists P
such that for the perturbed reference state ωP one has J+P = Jo.

REMARK 5. In the equilibrium case Tℓ = Tr = T we have ω+(σ ) = 0, and one
may naively expect that σ does not fluctuate with respect to ω and ω+, i.e. that
e(α) = e+(α) = 0 for all α, and that I (s) = I+(s) = ∞ if s 6= 0. If one also takes
Tc = T and the perturbed reference state described in Remark 3, then σ = 0, and
the above expectation is obviously correct. On the other hand, for the reference state
determined by D, in the high-temperature regime T → ∞, Tc fixed, the interval J
collapses to [0, 1] while the interval J+ collapses to {0}. Hence, in this regime,

the rate functions Î (s) and Î+(s) are linear for s ≤ 0 and s ≥ 0, with the slopes

of the linear parts determined by the end points of the finite intervals Ĵ and Ĵ+,
and the entropy production observable has nontrivial fluctuations.

REMARK 6. The scattering theory arguments of [22] that lead to the derivation
of the formula (32) extend to the case of inhomogeneous one-dimensional harmonic
crystal with Hamiltonian

H3(p, q) =
∑

n∈3

(
p2
n

2
+
ωnq

2
n

2
+
κn(qn − qn−1)

2

2

)
,

where ωn and κn are positive numbers satisfying

C−1 ≤ ωn, κn ≤ C for all n ∈ Z,

and C ≥ 1 is a constant. In this case the operator j is the Jacobi matrix

(jq)n = (ωn + κn + κn+1)qn − κnqn−1 − κn+1qn+1, n ∈ Z.

One easily verifies that Hypotheses (G1), (G2), and (G4) hold. If j has absolutely
continuous spectrum (considered as a self-adjoint operator on ℓ2

C
(Z)), then (G3)

also holds. Moreover, ω+(σ ) and e(α) can be computed in closed form in terms
of the scattering data of the pair (j, j0), where j0 = jℓ ⊕ jc ⊕ jr (for related
computations in the context of open quasi-free quantum systems we refer the reader
to [21, 22, 25]). The formulae for ω+(σ ) and e(α) involve the scattering matrix
of the pair (j, j0)

3 and estimating the location of the intervals J , J+ is difficult.

3In the case of harmonic crystal considered in this section, j is a discrete Laplacian and the absolute values

of the entries of the scattering matrix of the pair (j, j0) are either 0s or 1s. For this reason the formula (32)

for e(α) has a particularly simple form.
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However, the interesting aspect of the formula for e(α) is that it allows to express
the measure ν in Part (2) of Theorem 2.1 in terms of the scattering data. The
mathematical and physical significance of this representation remain to be studied
in the future. Finally, the scattering methods can be extended to treat an arbitrary
number of infinite harmonic reservoirs coupled to a finite harmonic system. The
discussion of such extensions is beyond the scope of this paper.

4. Proofs

4.1. An auxiliary lemma

Using the notation and conventions of Section 2.1, we have the following simple
result.

LEMMA 4.1.
(1) If A = A∗ ∈ T , then the quadratic form ℓ2

R
(Ŵ) ∋ x 7→ qA(x) = (x,Ax)

has a unique extension to an element of L1(X, dωD) with a norm satisfying
‖qA‖1 ≤ ‖D‖ ‖A‖1. Moreover,

∫
qA(x) dωD(x) = tr(DA). (34)

(2) Let R ∋ t 7→ At = A∗
t ∈ T be differentiable at t = t0 and let Ȧt0 be its

derivative. Then the map R ∋ t 7→ qAt ∈ L1(X, dωD) is differentiable at t = t0
and

d

dt
qAt

∣∣∣∣
t=t0

= qȦt0
.

(3) If 1 does not belong to the spectrum of A, then the function T ∋ X 7→ F(X) =
det(I −X) is differentiable at X = A and its derivative is given by

(DAF)(X) = −F(A) tr((I − A)−1X). (35)

Proof :
Part (1) By Eq. (4), the function x 7→ 8y(x) = (y, x) belongs to L2(X, dωD) for
y ∈ X

∗
l . Moreover, Fubini’s theorem yields the estimate

‖8y‖2
2 =

∑

i,j∈Ŵ
yiyj

∫
xixj dωD(x) =

∑

i,j∈Ŵ
Dijyiyj = (y,Dy) ≤ ‖D‖ ‖y‖2, (36)

which implies that the linear map y 7→ 8y has a unique extension 8 : ℓ2
R
(Ŵ) →

L2(X, dωD), such that ‖8‖ ≤ ‖D‖1/2.
A self-adjoint A ∈ T has a spectral representation A =

∑
k akϕk(ϕk, · ), where

the ak are the eigenvalues of A and the corresponding eigenvectors ϕk form an
orthonormal basis of ℓ2

R
(Ŵ). It follows that qA(x) =

∑
k ak8ϕk (x)

2 from which we

conclude that qA extends to an element of L1(X, dωD) with

‖qA‖1 ≤
∑

k

|ak| ‖8ϕk‖
2
2 ≤

∑

k

|ak| ‖D‖ = ‖D‖ ‖A‖1.
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The last equality in Eq. (36) yields
∫
qA(x) dωD(x) =

∑

k

ak ‖8ϕk‖
2
2 =

∑

k

ak(ϕk,Dϕk) = tr(AD),

which proves the identity (34).

Part (2) It follows from Part (1) that the linear map T ∋ A 7→ qA ∈ L1(X, dωD)
is bounded and hence C1.

Part (3) Using a well-known property of the determinant (see Theorem 3.5 in [29]),
we can write

F(A+X) = det(I − (A+X)) = det((I − A)(I − (I − A)−1X)

= det(I − A) det(I − (I − A)−1X)

= F(A) det(I − (I − A)−1X).

To evaluate the second factor on the right-hand side of this identity, we apply the
formula

det(I +Q) = 1 +
∞∑

k=1

tr(Q∧k),

where Q∧k denotes the k-th antisymmetric tensor power of Q (see [29]). Since
‖Q∧k‖1 ≤ (k!)−1‖Q‖k1, one has the estimate

| det(I +Q)− 1 − tr(Q)| ≤ e‖Q‖1 − 1 − ‖Q‖1 ≤
e‖Q‖1

2
‖Q‖2

1.

It follows that

det(I − (I − A)−1X) = 1 − tr((I − A)−1X)+ O(‖X‖2
1),

as X → 0 in T . Thus, we can conclude that

F(A+X)− F(A) = −F(A) tr((I − A)−1X)+ O(‖X‖2
1),

and the result follows. �

4.2. Proof of Proposition 2.1

Part (1) Up to the constant tr(Dς) (which is well defined since ς ∈ T ), σ is given
by the quadratic form qς which is in L1(X, dω) by Lemma 4.1 (1). For x ∈ Xl ,
i.e. ω-a.e. x ∈ X, one has

σt(x)− σs(x) =
1

2

(
x, (etL

∗
ςetL − esL

∗
ςesL)x

)
,

whence, setting ςt = etL
∗
ςetL and applying again Lemma 4.1 (1), it follows that

‖σt − σs‖L1(X,dω) ≤
1

2
‖D‖ ‖ςt − ςs‖1.
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Thus, it suffices to show that the function t 7→ ςt ∈ T is continuous. This immediately
follows from the norm continuity of the group etL, the fact that ς ∈ T , and the
well-known trace inequality ‖AB‖1 ≤ ‖A‖ ‖B‖1. We note, in particular, that

‖σt‖L1(X,dω) ≤ ‖D‖ (1 + ‖etL‖2) ‖ς‖1 for t ∈ R.

Part (2) From Eq. (5), we deduce that

ℓωt |ω =
1

2
log det(I +DTt)−

1

2
qTt . (37)

Now note that Tt = D−1
t −D−1 satisfies the cocycle relation

Tt+s = Tt + e−tL
∗
Tse

−tL. (38)

It thus follows from Assumption (G1) that the function t 7→ Tt ∈ T is everywhere
differentiable and that its derivative is given by

Ṫt = −2ς−t . (39)

Lemma 4.1 (3) and the chain rule imply that the first term on the right-hand side
of (37) is a differentiable function of t . Using Eq. (35), an elementary calculation
shows that

1

2

d

dt
log det(I +DTt)

∣∣∣
t=0

= −tr(Dς).

Applying Lemma 4.1 (2) to the second term on the right-hand side of Eq. (37),
one further gets

−
1

2

d

dt
qTt = qς−t = qς ◦ φ−t .

Summing up, we have shown that

d

dt
ℓωt |ω = σ−t , t ∈ R.

Since the function t 7→ σ−t ∈ L1(X, dω) is continuous by Lemma 4.1 (1), and
ℓω|ω = 0, we can use Riemann’s integral to write

ℓωt |ω =
∫ t

0

σ−s ds. (40)

The fact that, for ω-almost every x ∈ X, one has

ℓωt |ω(x) =
∫ t

0

σ−s(x) ds, (41)

follows from Theorem 3.4.2 in [20].

Part (3) From the cocycle relation

ℓωt+s |ω = ℓωt |ω + ℓωs |ω ◦ φ−t , (42)
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we infer

ξs =
1

s

(
e
ℓωt+s |ω − eℓωt |ω

)
− σ−t e

ℓωt |ω =
1

s

(
eℓωs |ω − 1 − sσ

)
◦ φ−t dωt

dω
,

and hence∫

X

|ξs | dω =
1

|s|

∫

X

∣∣eℓωs |ω − 1 − sσ
∣∣ dω

≤
1

|s|

∫

X

∣∣eℓωs |ω − 1 − ℓωs |ω
∣∣ dω +

1

|s|

∫

X

∣∣ℓωs |ω − sσ
∣∣ dω.

To prove that relation (10) holds in L1(X, dω), it suffices to show that both terms
on the right-hand side of this inequality vanish in the limit s → 0.

To estimate the first term we note that the inequality eℓ − 1 − ℓ ≥ 0 (which
holds for ℓ ∈ R) combined with Eq. (34) and (37) implies

1

|s|

∫

X

∣∣eℓωs |ω − 1 − ℓωs |ω
∣∣ dω =

1

|s|

(
ω(eℓωs |ω)− 1 −

∫

X

ℓωs |ω dω

)

=
1

2

∣∣∣∣
1

s
(tr(DTs)− log det(I +DTs))

∣∣∣∣ .

By Assumption (G1), the map s 7→ Ts is differentiable in T at s = 0. Since T0 = 0,
we can write

lim
s→0

1

|s|

∫

X

∣∣eℓωs |ω − 1 − ℓωs |ω
∣∣ dω =

1

2

∣∣∣∣
d

ds
(tr(DTs)− log det(I +DTs))

∣∣∣
s=0

∣∣∣∣ .

Using Lemma 4.1 (3) and the chain rule, we get

d

ds
(tr(DTs)− log det(I +DTs))

∣∣∣
s=0

= tr(DṪ0)− tr(DṪ0) = 0.

To deal with the second term, we use Eq. (40), Fubini’s theorem and Lemma 4.1 (1)
to write

1

|s|

∫

X

∣∣ℓωs |ω − sσ
∣∣ dω =

∫

X

∣∣∣∣
∫ 1

0

(σ−su − σ) du

∣∣∣∣ ≤
∫ 1

0

∫

X

∣∣qς−su−ς
∣∣ dω du

≤ ‖D‖
∫ 1

0

‖ς−su − ς‖1du,

and since the map s 7→ ςs is continuous in T , the dominated convergence theorem
yields

lim
s→0

∫ 1

0

‖ς−su − ς‖1du = 0.

Part (4) Relation (8) implies that

ωt(σ ) = ω(σt) =
∫

X

qςt dω − tr(Dς),
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and formula (34) yields

ωt(σ ) = tr(D(ςt − ς)) = tr(ς(Dt −D)).

Part (5) Starting from definition (2) and using the cocycle relation (42), we obtain

Ent(ωt |ω) = −
∫

X

ℓωt |ω dωt =
∫

X

ℓω−t |ω dω.

Eq. (41) and Fubini’s theorem further yield

Ent(ωt |ω) =
∫

X

∫ −t

0

σ−s dsdω = −
∫

X

∫ t

0

σs dsdω = −
∫ t

0

ωs(σ ) ds.

4.3. Proof of Proposition 2.2

Part (1) We have to show that ω+, the Gaussian measure of covariance D+, is the
weak limit of the net {ωt}t>0. Since the cylinders form a convergence determining
class for Borel measures on X (see Example 2.4 in [5]), it suffices to show that
limt→∞ ωt(CI (B)) = ω+(CI (B)) holds for any finite subset I ⊂ Ŵ and any Borel
set B ⊂ R

I . By Hypotheses (G2)–(G3), one has limt→∞Dt,I = D+,I and

e
− 1

2
(x,D−1

t,I
x) ≤ e−

‖x‖2

2M ,

for all x ∈ R
I . It follows that limt→∞D

−1
t,I = D−1

+,I as well as limt→∞ det(2πDt,I ) =
det(2πD+,I ) so that

lim
t→∞

1√
det(2πDt,I )

∫

B

e
− 1

2
(x,D−1

t,I
x)
dx =

1√
det(2πD+,I )

∫

B

e
− 1

2
(x,D−1

+,I x) dx,

holds by the dominated convergence theorem. The same argument applies to ω−.
Part (2) Follows directly from Lemma 4.1 (1) and Proposition 2.1 (4).

4.4. Proof of Proposition 2.3

Part (1) Let us note that α ∈ Jt if and only if

D−1 + α(e−tL
∗
D−1e−tL −D−1) > 0. (43)

It follows that Jt is open. For θ ∈ [0, 1], we can write

D−1 +θα(e−tL∗
D−1e−tL−D−1) = θ

(
D−1 + α(e−tL

∗
D−1e−tL −D−1)

)
+ (1−θ)D−1,

whence α ∈ Jt ⇒ θα ∈ Jt and we can conclude that Jt is an interval. Multiplying (43)
by ϑ from the left and the right and using the relations ϑ = ϑ∗ = ϑ−1, we obtain

D−1 + α(etL
∗
D−1etL −D−1) > 0, (44)

whence we see that α ∈ J−t . By symmetry, we conclude that J−t = Jt . Furthermore,

multiplying (44) by e−tL
∗

and e−tL from the left and the right, respectively, we
obtain

αD−1 + (1 − α)e−tL
∗
D−1e−tL > 0.
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It follows that 1 − α ∈ Jt , and by symmetry, we conclude that α ∈ Jt if and only
if 1 − α ∈ Jt . Thus, Jt is an open interval symmetric around α = 1

2
.

Part (2) For any bounded operator C > 0 on ℓ2
R
(Ŵ) and for any α, t ∈ R such that

C−1 + αTt > 0, formulae (5) and (37) allow us to write

eαℓωt |ω dωC =

√(
det(I +DTt)

)α

det(I + αCTt)
dω(C−1+αTt )−1 . (45)

By definition D−1 + αTt > 0 for α ∈ (−δt , 1 + δt). Taking C = D in (45) and
integrating over X, one easily checks that

et(α) =
α

2
log det(I +DTt)−

1

2
log det(I + αDTt) (46)

for all t ∈ R and α ∈ (−δt , 1 + δt). The first term on the right-hand side of
this identity is linear in α and hence entire analytic.4 The determinant in the
second term is also an entire function of α, and its logarithm is analytic on the
set where the operator I + αDTt is invertible; see Section IV.1 in [17]. Writing
I+αDTt = D(D−1+αTt), we see that I+αDTt is invertible for α ∈ Jt . Furthermore,
since

I + αDTt = αD1/2(α−1I +D1/2TtD
1/2)D−1/2,

and the operator D1/2TtD
1/2 is self-adjoint, we conclude that I +αDTt is invertible

for α ∈ C \R. Hence, the function et(α) is analytic in the cut plane C+ ∪C− ∪ Jt .
Its convexity is a well-known property of Rényi’s relative entropy and follows from
Hölder’s inequality applied to Eq. (13), and relations (14) are easy to check by
a direct computation.

It remains to prove that et(α) = +∞ for α /∈ Jt . To this end, we first note
that the spectrum of D−1 is contained in the interval [M−1, m−1] and that the
operator αTt is compact. By the Weyl theorem on essential spectrum, it follows
that the intersection of the spectrum of the self-adjoint operator D−1 +αTt with the
complement of [M−1, m−1] consists of isolated eigenvalues. Thus, if α /∈ Jt , then
there are finitely many orthonormal vectors {ϕj }, numbers λj ≥ 0, and an operator
B ≥ cI with c > 0 such that

D−1 + αTt = −
n∑

j=1

λj (ϕj , ·)ϕj + B.

It follows that

ω(eαℓωt |ω) =
(
det(I +DTt)

)α/2
∫

X

exp

{
1

2

n∑

j=1

λj |(ϕj , x)|2
}
e−(x,Bx)/2ω(dx). (47)

Since B −D−1 ∈ T and D−1 + B > 0, we conclude from (5) that e−(x,Bx)/2ω(dx)
coincides, up to a numerical factor C > 0, with a centered Gaussian measure whose

4We shall see in the proof of Theorem 2.1 that it is in fact identically equal to zero.



360 V. JAKŠIĆ, C.-A. PILLET and A. SHIRIKYAN

covariance operator is equal to D′ := (D−1 + B)−1. Hence, we can rewrite (47) in
the form

ω(eαℓωt |ω) = C

∫

X

exp

{
1

2

n∑

j=1

λj |(ϕj , x)|2
}
ωD′(dx).

Since the support of ωD′ coincides with the entire space, this integral is infinite.
Part (3) Using the cocycle relation (42), we can write 5

et(1 − α) = logω(eℓωt |ωe−αℓωt |ω) = logωt(e
−αℓωt |ω)

= logω(e−αℓωt |ω◦φt ) = logω(e
αℓω−t |ω) = e−t(α).

Now note that, by (G4), the measure ω is invariant under ϑ , whence we conclude
that ω−t = ωt ◦ ϑ and ℓωt |ω ◦ ϑ = ℓω−t |ω. It follows that e−t(α) = et(α). Combining
this with the above relation, we obtain the Evans–Searles symmetry.

4.5. Proof of Theorem 2.1

Part (1) We first prove the existence of limit (15). Let us set

Dt(α) = ((1 − α)D−1 + αD−1
t )

−1 (48)

and recall that et(α) can be written in the form (46). Using the relations (35), (39),
Lemma 4.1 (3) and the chain rule we obtain

d

dt
log det(I + αDTt) = tr

(
(I + αDTt)

−1αDṪt
)

= −2α tr
(
Dt(α)ς−t

)

= −2α tr
(
D−t(1 − α)ς

)
. (49)

In particular, for α = 1 the derivative is equal to zero for any t ∈ R, whence we
conclude that the first term in (46) is identically equal to zero. Let us now fix
α ∈ J and choose t0 > 0 so large that α ∈ Jt for t ≥ t0. It follows from (46)
and (49) that

1

t
et(α) =

1

t
et0(α)−

2α

t

∫ t

t0

tr
(
D−s(1 − α)ς

)
ds. (50)

By Assumption (G3)

s - lim
s→∞

D−s(1 − α) = D−(1 − α) :=
(
αD−1 + (1 − α)D−1

−
)−1
,

and since ς is trace class, it follows that

lim
s→∞

tr
(
Ds(1 − α)ς

)
= tr

(
D−(1 − α)ς

)
.

Combining this with (50), we conclude that for α ∈ J ,

lim
t→+∞

1

t
et(α) = −2α tr

(
D−(1 − α)ς

)
. (51)

5Note that this computation does not use (G4).
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Once the existence of limit is known, we can easily obtain the required properties
of e(α). The convexity of e(α) and the first and last relations in (16) follow
immediately from the corresponding properties of et(α). Furthermore, it follows
from (40) and the invariance of ω under ϑ that

e′t(0) =
∫

X

ℓωt |ω(x) ω(dx) =
∫

X

∫ t

0

σ−s(x) ds ω(dx) = −
∫

X

∫ t

0

σs(x) ds ω(dx).

In view of Part (2), the limit e(α) is analytic on its domain of definition. By
Theorem 25.7 in [26],

lim
t→∞

1

t
e′t(α) = e′(α),

for α ∈ J . Using Fubini’s theorem and Part (2) of Proposition 2.2, we derive

e′(0) = lim
t→∞

1

t
e′t(0) = − lim

t→∞

1

t

∫ t

0

ω(σs) ds = −ω+(σ ) = −tr(ςD+).

The third relation in (16) now follows from the fourth one.
Part (2) The analyticity of e(α) follows from relation (51). We now prove (17).

Let µ be the spectral measure of Q for the linear functional induced by the

trace class operator D
1/2
− ςD

1/2
− . In other words, µ is the signed Borel measure such

that ∫
f (q)µ(dq) = tr(f (Q)D

1/2
− ςD

1/2
− ), (52)

for any bounded continuous function f : R → C. By Eq. (21), the measure µ has

its support in the interval [−δ−1
, (1 + δ)−1]. One easily checks that

f 7→
∫
f (q−1)q−1 µ(dq),

defines a continuous linear functional on the Fréchet space C0(R) of compactly
supported continuous functions f : R → C. By the Riesz representation theorem
(see Chapter 2 in [28]), it follows that there exists a signed Borel measure ν,
with support on (−∞,−δ] ∪ [1 + δ,∞), such that

∫
f (r) ν(dr) =

∫
f (q−1)q−1 µ(dq). (53)

A standard argument based on the monotone class technique shows that (53) remains
valid for any bounded measurable function f . Decomposing the measures µ and ν
into their positive and negative parts, we easily deduce from (53) that

∫
f (r)|ν|(dr) =

∫
f (q−1)|q|−1|µ|(dq),

for all bounded continuous f . In particular, taking f (r) = 1
r

outside a small
neighbourhood of zero and using (52), we derive

∫ |ν|(dr)
|r|

=
∫

|µ|(dq) ≤ ‖D1/2
− ςD

1/2
− ‖1 < ∞.
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Recalling relation (23) (which will be established below) and using (53) with
f (r) = − log(1 − αr−1) on the support of ν, we obtain

e(α) = −α tr
(
g(αQ)D

1/2
− ςD

1/2
−
)

= −
∫
αg(αq)µ(dq)

= −
∫
q−1 log(1 − αq)µ(dq) = −

∫
log(1 − αr−1)ν(dr).

This relation coincides with (17).
To prove the uniqueness, let ν1, ν2 be two signed Borel measures with support

in R \ J , satisfying
∫

|r|−1|νk|(dr) < ∞, k = 1, 2, and such that
∫

log(1 − αr−1)ν1(dr) =
∫

log(1 − αr−1)ν2(dr)

for α ∈ J . Differentiating, we derive that
∫
dν1(r)

r − α
=
∫
dν2(r)

r − α
(54)

for α ∈ J . By analytic continuation (54) holds for all α ∈ C+ ∪ C−. Since the
linear span of the set of functions {(r − α)−1 |α ∈ C+ ∪ C−} is dense in C0(R),
(54) yields that for any f ∈ C0(R),

∫
f dν1 =

∫
f dν2. Hence ν1 = ν2.

Part (3) The fact that I is a convex function taking values in [0,+∞] follows
immediately from the definition. The relation e′(0) = ω−(σ ) = −ω+(σ ) and the
regularity of e imply that I vanishes only at s = ω+(σ ). The validity of (18) is
a straightforward consequence of the last relation in (16). Let us prove (19).

Consider the following family of random variables {6t}t∈[0,∞) defined on the
probability space (X,F , ω),

6t =
1

t

∫ t

0

σs ds.

By Proposition 2.1 (2) and the symmetry relations ω = ω ◦ ϑ and σ ◦ ϑ = −σ , we
have

et(α) = logω
(
eαℓωt |ω

)
= logω

(
eα

∫ t
0 σ−s ds

)
= logω

(
e−α

∫ t
0 σs ds

)
= logω

(
e−αt6t

)
,

so that et(−α) is the cumulant generating function of the family {6t}t∈[0,∞). Applying
a local version of the Gärtner–Ellis theorem (see Theorem 4.65 in [22]), we conclude
that (19) holds with

ε = min
(
−ω+(σ )− ∂+e(−δ),−ω+(σ )+ ∂−e(1 + δ)

)

= min
(
e′(0)− ∂+e(−δ), ∂−e(1 + δ)− e′(1)

)
,

where ∂±e(α) denotes the right/left derivative of e(α). The fact that ε > 0 follows
from the convexity and analyticity of e(α).
Part (4) As was shown above, et(−α) is the cumulant generating function of {6t}.
Therefore, by Bryc’s lemma (see [7] or Section 4.8.4 in [22]), the CLT will be
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established if we prove that et(α) extends analytically to a disc Dε = {α ∈ C | |α| < ε}
and satisfies the estimate

sup
t≥t0,α∈Dε

1

t
|et(α)| < ∞, (55)

for some t0 > 0. The analyticity was established in Part (2) of Proposition 2.3.
Using the representation (50), one easily sees that in order to prove (55) it suffices
to show that

sup
t∈R,|1−α|<ε

‖Dt(α)‖ < ∞. (56)

An elementary analysis shows that Assumption (G2) implies the lower bound

(1 − α)D−1
s + αD−1

t ≥
2

M

M −m

M +m

(
δ + 1

2
− |α − 1

2
|
)
, (57)

for t, s ∈ R and α ∈ [−δ, 1 + δ]. Since for z ∈ C,

Re
(
(1 − z)D−1

s + zD−1
t

)
= (1 − Re z)D−1

s + Re zD−1
t ,

we have the upper bound

‖
(
(1 − z)D−1

s + zD−1
t

)−1 ‖ ≤
M

2

M +m

M −m

(
δ + 1

2
− | Re z− 1

2
|
)−1

(58)

for s, t ∈ R and z in the strip {z ∈ C | Re z ∈ (−δ, 1 + δ)}. Thus, the required
estimate (56) holds provided ǫ < δ.
Part (5) We first note that the differentiability of e(α) at zero and a local version
of Theorems II.6.3 in [11] (which holds with identical proof) implies that, for any
ε > 0 and any integer n ≥ 1,

ω ({x ∈ X | |6n − ω+(σ )| ≥ ε}) ≤ e−a(ε)n,

where a(ε) > 0 does not depend on n. By Theorems II.6.4 in [11], it follows that

lim
n→∞

1

n

∫ n

0

σs(x) ds = ω+(σ ) (59)

for ω-a.e. x ∈ X. Suppose now we have shown the following inequality for some
r < 1,

sup
0≤t≤1

∣∣∣∣
∫ n+t

n

σs(x) ds

∣∣∣∣ ≤ (n+ 1)r for n ≥ n0(x), (60)

where n0(x) ≥ 0 is an integer that is finite for ω-a.e. x ∈ X. In this case, we can
write

∣∣∣∣
1

t

∫ t

0

σs(x) ds −
1

n

∫ n

0

σs(x) ds

∣∣∣∣ ≤
1

n

∣∣∣∣
∫ n+t̂

n

σs(x) ds

∣∣∣∣+
1

n2

∣∣∣∣
∫ n

0

σs(x) ds

∣∣∣∣,

where n is the integer part of t and t̂ = t − n. It follows from (60) that the first
term on the right-hand side goes to zero for a.e. x ∈ X, and the second goes to
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zero in view of (59). Combining this with (59), we obtain (20). Thus, it remains
to establish (60).

Let us fix an arbitrary r ∈ (0, 1) and denote by ξn(x) the expression on the
left-hand side of (60). In view of the first relation in (12), we have

ξn(x) = sup
0≤t≤1

∣∣∣∣
∫ n+t

n

(esLx, ςesLx)ds

∣∣∣∣ = sup
0≤t≤1

∣∣(x, ςn,t x)
∣∣, ςn,t :=

∫ n+t

n

ςs ds.

Suppose we have constructed a sequence {Bn} of self-adjoint elements of T such
that, for any n ≥ 0,

sup
0≤t≤1

∣∣(x, ςn,t x)
∣∣ ≤ (x, Bnx), ‖Bn‖1 ≤ C, (61)

where C > 0 does not depend on n. In this case, introducing the events An = {x ∈
X | ξn(x) ≥ (n+ 1)r}, for sufficiently small ε > 0, we can write

ω(An) ≤ e−ε(n+1)rω(eεξn) ≤ e−ε(n+1)r
(
det(I − 2εDBn)

)−1/2
, (62)

where we used the fact that the Gaussian measures on X with covariance operators
D′
ε = (D−1 − 2εBn)

−1 and D are equivalent, with the corresponding density given
by (see (5))

1D′
ε |D(x) =

(
det(I − 2εDBn)

)1/2
eε(x,Bnx).

In view of the second inequality in (61), the determinant in (62) is bounded from
below by a positive number not depending on n ≥ 0 for sufficiently small ε > 0. Thus,
the series

∑
n ω(An) converges, and by the Borel–Cantelli lemma, inequality (60)

holds with an almost surely finite integer n0(x).
We now prove (61). From Assumption (G2) we derive

M ≥ Dt = etLDetL
∗ ≥ metLetL

∗
,

so that the uniform bound

‖etL‖ ≤
(
M

m

)1/2

(63)

holds. Since ς ∈ T is self-adjoint, one has |(x, ςx)| ≤ (x, |ς |x) for all x ∈ K.
Hence

sup
0≤t≤1

|(x, ςn,tx)| ≤
∫ n+1

n

|(esLx, ςesLx)|ds ≤
∫ n+1

n

(esLx, |ς |esLx)ds = (x, Bnx),

where

Bn =
∫ n+1

n

esL
∗ |ς |esLds

is a self-adjoint element of T such that

‖Bn‖1 ≤
M

m
‖ς‖1.

The proof of Theorem 2.1 is complete.
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4.6. Proof of Theorem 2.2

Part (1) Let {sn} be an arbitrary sequence converging to δ. Recall that D−1+αTsn > 0

for α ∈ Jsn . Multiplying this inequality by esnL/2 from the right and by esnL
∗/2

from the left, we obtain

(1 − α)D−1
−sn/2 + αD−1

sn/2
> 0,

for any α ∈ Jsn . Invoking Assumptions (G2)–(G3), we can pass to the limit in the
last inequality to get

(1 − α)D−1
− + αD−1

+ ≥ 0,

for any α ∈ J . Taking α = 1 + δ and α = −δ and performing some simple
estimation, we obtain inequality (21). Furthermore, it follows from (21) that αQ < 1
for α ∈ (−δ, 1 + δ), whence we conclude that the operator function (22) is analytic
in the cut plane C+ ∪ C− ∪ (−δ, 1 + δ).

Part (2) We first prove the existence of the limit in (23). To this end, we shall
apply Vitali’s convergence theorem to the sequence of functions

hn(α) =
1

tn
etn(α), n ≥ 1, α ∈ Jtn .

By the very definition of δ̂, for any ε > 0 there is Nε such that, for all n ≥ Nε,

the function hn is analytic in the cut plane C− ∪ C+ ∪ Ĵε where

Ĵε = (−δ̂ + ε, 1 + δ̂ − ε) ⊂ Jtn .

By the proof of Part (4) of Theorem 2.1 (more precisely Eq. (58)), the functions
hn are uniformly bounded in any disk or radius less than δ around α = 0. By the
Cauchy estimate, the same is true of their derivatives h′

n.

Let K0 be the compact subset of (C− ∪ C+ ∪ Ĵε) \ {0} described on the left of
Figure 1. From definition (48) we infer

Dtn(α) = D1/2(1 + αQn)
−1D1/2 = zD1/2(z−Qn)

−1D1/2, z = −
1

α
,

where Qn = D1/2TtnD
1/2 is a self-adjoint element of T . By definition, α ∈ Jtn iff

I + αQn > 0, i.e.

sp(Qn) ⊂ (−(1 + δtn)
−1, δ−1

tn
) ⊂ (−(1 + δ̂ − ε)−1, (δ̂ − ε)−1) (64)

for all n ≥ Nε. Since the function α 7→ z = −1/α maps K0 to a set which is
uniformly separated from sp(Qn) (see Fig. 1), it follows from the spectral theorem
that

sup
n≥Nε
α∈K0

‖Dtn(α)‖ ≤ ‖D‖ sup
n≥Nε

−z−1∈K0

|z|
dist(z, sp(Qn))

< ∞.

Applying Lemma 4.1 (3) to Eq. (46) (recall that the first term on the right-hand
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Reα

Imα Im z

Re z

Imα Im z

Reα Re z

Fig. 1. A compact region K0 ⊂ (C− ∪C+ ∪ Ĵε) \ {0} and its image under the map α 7→ z = −1/α. The thick

lines in the α-plane are the cuts R \ Ĵε . By Eq. (64), if n ≥ Nε , then the spectrum of Qn lies inside the thick

line of the z-plane.

side of the latter vanishes) and integrating Eq. (39) to express Ttn we obtain

h′
n(α) = −

1

2tn
tr(Dtn(α)Ttn) =

∫ 1

0

tr(Dtn(α)ς−stn)ds.

The bound (63) further yields

|h′
n(α)| ≤

M

m
‖ς‖1 ‖Dtn(α)‖,

and the previous estimate allows us to conclude that the sequence {h′
n}n≥Nε is

uniformly bounded in K0.

Summing up, we have shown that {h′
n}n≥Nε is uniformly bounded on any compact

subset of C− ∪ C+ ∪ Ĵε and since hn(0) = 0, the same is true of the sequence
{hn}n≥Nε . By Part (1) of Theorem 2.1, the sequence {hn(α)} converges for α ∈ J .
By Vitali’s theorem (see Section I.A.12 in [18]), we conclude that the sequence {hn}
converges uniformly on any compact subset of C− ∪ C+ ∪ Ĵε, and the limit is an
analytic function on it. Since ε > 0 was arbitrary, we see that the middle term in (23)

is well defined for any α ∈ C− ∪C+ ∪ Ĵ and is an analytic function on this domain.

To prove the second equality in (23), since both left- and right-hand sides

are analytic functions on C− ∪ C+ ∪ Ĵ it suffices to establish it for α ∈ J .
The lower bound (57) shows that Dt(α) is bounded and strictly positive for all
t ∈ R and α ∈ (−δ, 1 + δ). It follows from Eq. (37) and Lemma 4.1 (1) that
ℓωt |ω ∈ L1(X, dωDt (α)). Moreover, Eq. (45) shows that for f ∈ L1(X, dωDt (α)),

ωDt (α)(f ) =
ω(eαℓωt |ωf )

ω(eαℓωt |ω)
. (65)

Using this relation with f = ℓωt |ω, integrating the identity

eαℓωt |ω = 1 +
∫ α

0

eγ ℓωt |ωℓωt |ω dγ
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against ω, and applying Fubini’s theorem, we obtain

ω(eαℓωt |ω) = 1 +
∫ α

0

ω(eγ ℓωt |ω)ωDt (γ )(ℓωt |ω) dγ.

Resolving this integral equation (which reduces to a linear differential equation) for
α 7→ ω(eαℓωt |ω), we derive

ω(eαℓωt |ω) = exp

(∫ α

0

ωDt (γ )(ℓωt |ω)dγ

)
.

Taking the logarithm, dividing by t , and using (41), we obtain

1

t
et(α) =

1

t

∫ α

0

ωDt (γ )(ℓωt |ω) dγ =
1

t

∫ α

0

∫ t

0

ωDt (γ )(σ−s) dsdγ

=
∫ α

0

∫ 1

0

ωDt (γ )(σ−ts) dsdγ. (66)

It follows from (34) and the first relation in (12) that

ωDt (γ )(σ−ts) = tr(Dt(γ ) ς−ts) = tr
(
e−tsLDt(γ )e

−tsL∗
ς
)

= tr
((
(1 − γ )D−1

−ts + γD−1
t (1−s)

)−1
ς
)
.

Combining this with Hypothesis (G3) and a continuity property of the trace, we
derive

lim
t→∞

ωDt (γ )(σ−ts) = tr
(
Dγ ς

)
= ωDγ (σ ) for γ ∈ (−δ, 1 + δ), s ∈ (0, 1),

where we set Dγ = ((1 − γ )D−1
− + γD−1

+ )−1. The bound (58) allows us to apply
the dominated convergence theorem to Eq. (66), and conclude that

e(α) = lim
t→∞

1

t
et(α) =

∫ α

0

∫ 1

0

ωDγ (σ ) dsdγ

=
∫ α

0

tr
(
Dγ ς

)
dγ, α ∈ (−δ, 1 + δ). (67)

Writing Dγ = D
1/2
− (I − γQ)−1D

1/2
− , we further get

e(α) =
∫ α

0

tr
(
D

1/2
− (I − γQ)−1D

1/2
− ς

)
dγ,

and performing the integral yields Eq. (23) for α ∈ (−δ, 1 + δ).
Finally, to prove (24), it suffices to note that if α does not belong to the

closure of Ĵ then, for infinitely many n ≥ 1, α /∈ Jtn and by Proposition 2.3 (2),
etn(α) = +∞.

Part (3) The required properties of the rate function Î follow from (16) and
elementary properties of the Legendre transform. Thus, we shall only prove (26).
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In doing so, we shall assume that the interval Ĵ is finite; in the opposite case, the
result follows immediately from the Gärtner–Ellis theorem; see Section 4.5.3 in [10].
Moreover, we shall consider only the nondegenerate situation in which ω+(σ ) > 0.
The analysis of the case ω+(σ ) = 0 is similar and easier.

Let us extend ê(α) to the endpoints of the interval Ĵ by the relation

ê(α) = lim sup
t→+∞

1

t
et(α), α ∈ {−δ̂, 1 + δ̂}.

Since the extended function ê is convex and, hence, continuous at any point where it

is finite, the Legendre transform of e(−α) coincides with Î defined by (25). In view
of a well-known result on the large deviation upper bound (e.g. see Theorem 4.5.3
in [10]), the following inequality holds for any closed subset F ⊂ R,

lim sup
n→∞

1

tn
logω

({
x ∈ X

∣∣∣∣
1

tn

∫ tn

0

σs(x) ds ∈ F
})

≤ − inf
s∈F

Î (s).

Since Î is also continuous, this upper bound easily implies that (24) will be
established if we prove the inequality

lim inf
n→∞

1

tn
logω

({
x ∈ X

∣∣∣∣
1

tn

∫ tn

0

σs(x) ds ∈ O
})

≥ − inf
s∈O

Î (s), (68)

where O ⊂ R is an arbitrary open set. A standard argument shows that it suffices
to prove (68) for any open interval J ⊂ R. Let us set

s− = − lim
α↑1+δ̂

ê′(α), s+ = − lim
α↓−δ̂

ê′(α).

In view of the local version of the Gärtner–Ellis theorem (see Theorem 4.65 in6 [22]),
relation (26) is true for any interval J ⊂ (s−, s+). Thus, it suffices to consider the
case when J = Js,ε = (s − ε, s + ε), where ±(s − s±) ≥ 0. The proof of (68) is
divided into several steps.

Step 1: Reduction. We first show that the required inequality will be established
if we prove that, for any ŝ ∈ R satisfying the inequality ±(ŝ − s±) ≥ 0 and any
ε > 0,

lim inf
n→∞

1

tn
logω

(
Bn(ŝ, ε)

)
≥ −Î (ŝ ± ε), (69)

where Bn(ŝ, ε) = {x ∈ X | |t−1
n ℓωtn |ω + ŝ| < ε}. Indeed, we have

Î (s) =
{

−(1 + δ̂)s − e− for s ≤ s−,

δ̂s − e+ for s ≥ s+,
(70)

6In the formulation of Theorem 4.65 in [22], it is required that the limit of t−1
n etn (α) as n → ∞ should

exist for any α in the closure of Ĵ . However, the same proof works also in the case when the limits exist only

for α ∈ Ĵ .
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where e− (respectively, e+) is the limit of ê(α) as α ↑ 1 + δ̂ (respectively, α ↓ −δ̂).
In particular, the rate function Î is everywhere finite and continuous. It follows
from (69) and inequality (68) with J ⊂ (s−, s+) that

lim
ε→0+

lim inf
n→∞

1

tn
logω

({
x ∈ X

∣∣∣∣
1

tn

∫ tn

0

σs(x) ds ∈ Jŝ,ε

})

= lim
ε→0+

lim inf
n→∞

1

tn
logω

(
Bn(ŝ, ε)

)
≥ −Î (ŝ),

where ŝ ∈ R is any point. A well-known (and simple) argument implies the required
lower bound (68) for any interval J ⊂ R. Thus, we need to establish (69). To
simplify the notation, we shall consider only the case when ŝ ≥ s+ (assuming that
s+ < ∞).

Step 2: Shifted measures. Let us fix ŝ ≥ s+ and denote ẽt(α) = et(−α) and
ẽ(α) = ê(−α). Since ẽ′tn is a monotone increasing function mapping the interval
−Jtn = (−1 − δtn, δtn) onto (−∞,∞) (see (46)), for any n ≥ 1 there is a unique
number αn ∈ −Jtn such that ẽ′tn(αn) = tnŝ. Following a well-known idea in the
theory of large deviations, let us define a sequence of measures νn on X by their
densities

1νn|ω = exp
(
−αnℓωtn |ω − ẽtn(αn)

)
.

Suppose we have proved that

lim inf
n→∞

νn
(
Bn(ŝ, ε)

)
> 0. (71)

In this case, assuming that αn > 0, we can write

ω
(
Bn(ŝ, ε)

)
=
∫

Bn(ŝ,ε)

exp
(
αnℓωtn |ω + ẽtn(αn)

)
dνn

≥ exp
(
tnαn(−ŝ − ε)+ ẽtn(αn)

)
νn
(
Bn(ŝ, ε)

)
,

whence it follows that

lim inf
n→∞

1

tn
logω

(
Bn(ŝ, ε)

)
≥ lim inf

n→∞

(
αn(−ŝ − ε)+

1

tn
ẽtn(αn)

)
. (72)

If we know that
lim
n→∞

αn = δ̂, lim inf
n→∞

1

tn
ẽtn(αn) ≥ e+, (73)

then αn > 0 for n large enough and inequality (72) and relation (70) immediately
imply the required result (69). Thus, we need to prove (71) and (73).

Step 3: Proof of (73). Since αn ∈ −Jtn and δtn → δ̂, the first relation in (73)
will be established if we show that

lim inf
n→∞

αn = δ̂. (74)

Suppose this is not the case. Then there is ε > 0 and a sequence nk → +∞
such that −1 ≤ αnk ≤ δ̂ − ε, where the first inequality follows from the fact that
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ẽ′tn(αn) ≥ 0 and ẽ′tn(−1) ≤ 0. To simplify notation, we assume that the entire
sequence {αn} satisfies this inequality. It follows that

s+ ≤ ŝ =
1

tn
ẽ′tn(αn) ≤

1

tn
ẽ′tn(δ̂ − ε) for any n ≥ 1. (75)

Since 1
tn
etn(α) are convex functions converging to the smooth function ẽ(α) for

α ∈ −Ĵ , by Theorem 25.7 in [26], we have

lim
n→∞

1

tn
ẽ′tn(α) = ẽ′(α) for any α ∈ −Ĵ ,

and the limit is uniform on any compact subset of −Ĵ . Comparing this with (75),

we see that s+ ≤ ẽ′(δ̂ − ε). It follows that ẽ′ is constant on the interval [δ̂ − ε, δ̂]
and, hence, by analyticity and the first relation in (16), the function e(α) vanishes.
This contradicts the assumption that ω+(σ ) > 0 and proves (74).

We now establish the second relation in (73). For any γ ∈ (0, δ̂), we have

ẽtn(αn) = ẽtn(γ )+
∫ αn

γ

ẽ′tn(α) dα ≥ ẽtn(γ )+ (αn − γ )ẽ′tn(0),

where we used the facts that ẽ′ is nondecreasing and that αn > γ for sufficiently
large n ≥ 1, in view of the first relation in (73). It follows that

lim inf
n→∞

1

tn
ẽtn(αn) ≥ ẽ(γ )+ (δ̂ − γ )ẽ′(0).

Passing to the limit as γ → δ̂, we obtain the required inequality.

Step 4: Proof of (71). Let us introduce trace class operators

Qn = D1/2TtnD
1/2, Mn = t−1

n (I − αnQn)
−1Qn, n ≥ 1.

Since αn ∈ −Jtn , the operator I −αnQn is strictly positive and Mn is well defined.
Suppose we have shown that

νn
(
f (Xn)

)
= µ

(
f (Yn)

)
, Xn = −t−1

n ℓωtn |ω, Yn =
1

2
(x,Mnx), n ≥ 1,

(76)
where f : R → R is an arbitrary bounded measurable function and µ is the centered
Gaussian measure on X with the covariance operator I . In this case, taking f to
be the indicator function of the interval Jŝ,ε, we can write

νn
(
Bn(ŝ, ε)

)
= µ

(
{x ∈ X | |Yn(x)− ŝ| < ε}

)
=: pn(ε) for any n ≥ 1.

Thus, the required assertion will be established if we prove that

inf
n≥1

pn(ε) > 0 for any ε > 0. (77)
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To this end, let us assume that we have proved that

M := sup
n≥1

‖Mn‖1 < ∞, tr(Mn) = 2ŝ. (78)

We now use the following lemma, whose proof is given in the end of this
subsection (cf. Lemma 2 in [8, Section 3].)

LEMMA 4.2. Let µ be the centered Gaussian measure on X with the covariance
operator I . Then for any positive numbers κ and ε there is p(κ, ε) > 0 such that

µ
(
{x ∈ X | |(x,Mx)− tr(M)| < ε}

)
≥ p(κ, ε) (79)

for any self-adjoint operator M ∈ T satisfying the inequality ‖M‖1 ≤ κ .

In view of (78), we have

Yn(x)− ŝ =
(
x, 1

2
Mnx

)
− tr

(
1
2
Mn

)
.

Applying Lemma 4.2 with κ = 2M, we see that (77) holds. Thus, to complete the
proof of the theorem, it remains to establish (76) and (78).

Step 5: Proof of the auxiliary assertions. Simple approximation and analyticity
arguments show that, to prove (76), is suffices to consider the case in which
f (x) = eγ x , where γ ∈ R is sufficiently small. Thus, we need to check that

νn
(
exp(−γ t−1

n ℓωtn |ω)
)

= µ
(
eγ Yn

)
. (80)

Recalling the construction of αn and using the relation ẽt(α) = − 1
2

log det(I − αQt)
(see (46)), we write

νn
(
exp(−γ t−1

n ℓωtn |ω)
)

=
∫

X

exp
(
−(γ t−1

n + αn)ℓωtn |ω − ẽtn(αn)
)
ω(dx)

= exp
(
ẽtn(γ t

−1
n + αn)− ẽtn(αn)

)
= det

(
I − γMn

)−1/2
.

This expression coincides with the right-hand side of (80).
Finally, to prove (78), we first note that the equality follows immediately from

the choice of αn and the relation ẽ′t(α) = 1
2
tr
(
(I − αQt)

−1Qt

)
. To establish the

inequality, we start by using (39) and (63) to get the bound

‖Qn‖1 ≤
∫ tn

0

‖D1/2ς−sD
1/2‖1ds ≤

M2

m
tn‖ς‖1. (81)

Writing the spectral decomposition of the compact self-adjoint operator Mn, we
easily show that

M−
n = t−1

n (I + αnQ
−
n )

−1Q−
n ,

where A+ and A− stand the positive and negative parts of a self-adjoint operator A,
and we used that fact that αn > 0 for sufficiently large n (see (74)). Combining
this relation with (81), we derive

tr(M−
n ) = t−1

n tr
(
(I + αnQ

−
n )

−1Q−
n

)
≤
M2

m
‖ς‖1.
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Recalling the second relation in (78), we conclude that

‖Mn‖1 = tr(|Mn|) = tr(Mn + 2M−
n ) ≤ 2

(
ŝ +

M2

m
‖ς‖1

)
.

The proof of Theorem 2.2 is complete. �

Proof of Lemma 4.2. We set Y (x) = (x,Mx) and note that µ(Y ) = tr(M).
Let us denote by {PI , I ⊂ R} the family of spectral projections for M and, given
a number θ > 0, write M = M≤θ +M>θ , where M≤θ = MP[−θ,θ]. Accordingly, we
represent Y in the form

Y (x) = Y≤θ (x)+ Y>θ (x), Y≤θ (x) =
(
x,M≤θx

)
− tr

(
M≤θ).

Now note that the random variables Y≤θ and Y>θ are independent under the law µ.
It follows that the probability P(M, ε) given by the left-hand side of (79) satisfies
the inequality

P(M, ε) ≥ µ
(
{|Y>θ | < ε/2, |Y≤θ | < ε/2}

)

= µ
(
{|Y>θ | < ε/2}

)
µ
(
{|Y≤θ | < ε/2}

)
. (82)

We claim that both factors on the right-hand side of this inequality are separated
from zero. Indeed, to estimate the first factor, we note that

κ ≥ ‖M‖1 ≥ θ rank
(
M>θ

)
, (83)

where rank(M>θ ) =: Nθ stands for the rank of M>θ . Denoting by λj the eigenvalues
of M indexed in the nonincreasing order of their absolute values, we see that

|Y>θ (x))| =
∣∣∣∣
Nθ∑

j=1

λj (x
2
j − 1)

∣∣∣∣ ≤ κ

Nθ∑

j=1

|x2
j − 1|,

where {xj } are the coordinates of x in the orthonormal basis formed of the
eigenvectors of M . Combining this with (83), we derive

µ
{
|Y>θ (x))| < ε/2

}
≥ µ

{ Nθ∑

j=1

|x2
j − 1| <

ε

2κ

}

≥
Nθ∏

j=1

µ
{
|x2
j − 1| < (2κNθ )

−1ε
}

≥ p
(
δ)κ/θ ,

where δ = εθ/(2κ2), and p(δ) > 0 is the probability of the event |x2 −1| < δ under
the one-dimensional standard normal law. To estimate the second factor in (82), we
use the Chebyshev inequality

µ
{
|Y≤θ (x)| < ε/2

}
= 1 − µ

{
Y≤θ (x) ≥ ε/2

}
− µ

{
−Y≤θ (x) ≥ ε/2

}

≥ 1 − µ
(
exp(γ Y≤θ − γ ε/2)

)
+ µ

(
exp(−γ Y≤θ − γ ε/2)

)
, (84)
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where γ > 0 is sufficiently small and will be chosen later. We have

µ
(
exp(γ Y≤θ )

)
= exp

{
−γ tr

(
M≤θ)− 1

2
log det

(
I − γM≤θ)}

= exp
{
− 1

2
tr
(
2γM≤θ + log(I − 2γM≤θ )

)}
. (85)

Now note that if 4|γ |θ ≤ 1, then

2γM≤θ + log(I − 2γM≤θ ) =
∞∑

n=2

(
−2γM≤θ)n

n
.

Recalling that ‖M≤θ‖ ≤ θ and ‖M≤θ‖1 ≤ κ and using the inequality |tr(AB)| ≤
‖A‖1‖B‖, it follows that

∣∣tr
(
2γM≤θ + log(I − 2γM≤θ )

)∣∣ ≤
∞∑

n=2

|2γ θ |n−12|γ |κ ≤ 8κγ 2θ.

Substituting this into (85), we see that, if |γ | ≤ (4θ)−1, then µ
(
exp(γ Y≤θ )

)
≤

exp
(
4κγ 2θ

)
. A similar estimate holds for µ

(
exp(−γ Y≤θ )

)
. Combining these in-

equalities with (84) and choosing γ = ε
16κθ

, we derive

µ
{
|Y≤θ (x)| < ε/2

}
≥ 1 − 2 exp

(
4κγ 2θ − γ ε/2

)
= 1 − 2 exp

(
−

ε2

64κθ

)
.

The right-hand side of this inequality can be made greater than zero by choosing
a sufficiently small θ > 0 which will depend only on κ and ε. �

4.7. Proof of Theorem 2.3

The proof of this result is very similar to that of Theorems 2.1 and 2.2, and
we shall only outline the proof.
Part (1) Follows from Hölder’s inequality as in the proof of Proposition 2.3 (2).
Part (2) Since 0 ∈ J+

t , the fact that J+
t is an interval follows immediately from the

following property: if α ∈ J+
t , then θα ∈ J+

t for θ ∈ (0, 1). To prove the analyticity,
note that, by Eq. (45), one has

e−αℓωt |ωdω+ =

√(
det(I +DTt)

)−α

det(I − αD+Tt)
dω

(D−1
+ −αTt )−1 .

This relation implies that the function

et+(α) = −
α

2
log det(I +D+Tt)−

1

2
log det(I − αD+Tt)

= −
α

2
log det(I +D1/2TtD

1/2)−
1

2
log det(I − αD

1/2
+ TtD

1/2
+ ) (86)

is real analytic in α on the open interval defined by the condition I−αD1/2
+ TtD

1/2
+ > 0

and takes the value +∞ on its complement (where the intersection of the spectrum
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of I − αD
1/2
+ TtD

1/2
+ with the negative half-line is nonempty). The above inequality

coincides with the one defining J+
t .

Part (3) The fact that J+ is an interval follows immediately from its definition. To
prove that J+

t ⊃ (−δ, δ), note that, in view of Hypothesis (G2), for any t, α ∈ R

we have

I − αD
1/2
+ TtD

1/2
+ = D

1/2
+ (D−1

+ − α(D−1
t −D−1))D

1/2
+ ≥

δ − |α|
δ + 1

.

This expression is positive for |α| < δ.
To prove the existence of limit (28) and its analyticity on J+, we repeat the

argument used in the proof of Theorem 2.2 (2). Namely, let us introduce the family

of operators D+
t (α) = (D−1

+ − αTt)−1, which are well defined for α ∈ (−δ, δ). Then
the following analogue of relation (65) is valid,

ωD+
t (α)

(f ) =
ω(e−αℓωt |ωf )

ω(e−αℓωt |ω)
for f ∈ L1(X, dωD+

t (α)
).

The argument used in the derivation of (66) gives that

1

t
et+(α) = −

∫ α

0

∫ 1

0

ωD+
t (γ )

(σ−ts) dsdγ,

while Hypothesis (G2) and the relation erLD+e
rL∗ = D+ valid for r ∈ R imply that

e−tsLD+
t (γ )e

−tsL∗ =
(
D−1

+ − γ (D−1
t (1−s) −D−1

−ts)
)−1 ≤ M

(
1 −

|γ |
δ

)−1

.

Following again the argument in the proof of Theorem 2.2 (2), for α ∈ (−δ, δ) we
derive

e+(α) = lim
t→∞

1

t
et+(α) = −

∫ α

0

ωD1−γ (σ ) dγ. (87)

Now note that D1−γ = ϑDγϑ , whence it follows ωD1−γ (σ ) = ωDγ (σ◦ϑ) = −ωDγ (σ ).
Substituting this into (87) and recalling (67), we see that

e+(α) =
∫ α

0

ωDγ (σ ) dγ = e(α) for α ∈ (−δ, δ). (88)

We have thus established the existence of limit (28) on the interval (−δ, δ) ⊂ J+.
The fact that it exists for any α ∈ J+ and defines a real-analytic function can be
proved with the help of Vitali’s theorem (cf. proof of Part (2) of Theorem 2.2).
Finally, relation (29) is established by the same argument as (24).
Parts (4–6) The proofs of the large deviation principle, central limit theorem,
and strong law of large numbers for the time average of the entropy production
functional under the limiting law ω+ are exactly the same as for ω (see Parts (3–5)
of Theorem 2.1), and therefore we will omit them.
Part (7) The fact that the functions e+(α) and e(α) coincide on the intersection
J+ ∩ J follows from (88) and their analyticity. The equality of the corresponding
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rate functions on a small interval around ω+(σ ) is a straightforward consequence
of (88) and the definition of the Legendre transform. �
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In this paper we introduce and study new dissipative dynamics for large interacting systems.
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1. Introduction

The theory of large dissipative systems has a long and growing mathematical
history. Some of the classical literature one could find e.g. in [24] and [37]; see also
references therein. In this paper we focus on dissipative dynamics with noncompact
configuration space and their counterparts in noncommutative algebras.

A construction of Markov semigroups on the space of continuous functions
with an infinite-dimensional underlying space well suited to study strong ergodicity
problems can be found in [51] in case of fully elliptic generators. More recently it
was extended to subelliptic situation in [16, 31] and Lévy type generators [35]. An
interesting approach via stochastic differential equations one can find in [15] and
some recent extension to subelliptic generators in [50] (see also [3, 4] and references
therein). Another approach via Dirichlet forms theory which is well adapted to L2

theory, can be found e.g. in [1, 45] and reference therein.
For symmetric semigroups, after a recent progress in proving the log-Sobolev

inequality for infinite-dimensional Hörmander type generators L symmetric in L2(µ)
defined with a suitable nonproduct measure µ ([25–28, 32, 43]), one can expect
an extension of the established strategy [51] for proving strong pointwise ergodicity
for the corresponding Markov semigroups Pt ≡ etL (respectively in the uniform
norm in case of the compact spaces as in [24] and references therein). One could
obtain more results in this direction, including configuration spaces given by infinite
products of general noncompact nilpotent Lie groups other than Heisenberg type
groups, by conquering a (finite-dimensional) problem of sub-Laplacian bounds (of
the corresponding control distance) which for a moment remains still very hard.

The ergodicity theory in case when an invariant measure is not given in advance,
in noncompact subelliptic setup is an interesting and challenging problem which was
initially studied in [16] and was extended in new directions in [31] developing further

[377]
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strategy based on generalised gradient bounds. We remark that in fully elliptic case
a strategy based on classical Bakry–Emery arguments involving restricted class of
interactions can be achieved. In case of the stochastic strategy of [15], the convexity
assumption enters via dissipativity condition in a suitable Hilbert space and does
not improve the former one as far as ergodicity is concerned; (on the other hand
it allows to study a number of stochastically natural models). In subelliptic setup
involving subgradient this strategy faces serious obstacles, see e.g. comments in [6].

In noncommutative setup the development of mathematical description of infinite
dissipative systems is much less developed. Some description of infinite-dimensional
dissipative dynamics of jump type which are not symmetric with respect to a
given Gibbs state as well as some results on theirs ergodicity can be found in
[54]; see also references therein and [14, 23, 38] on constructions associated to
classical Gibbs states (where interaction potential is classical). In [40] a construc-
tion and ergodicity results were provided for an interesting class where generator
of jumps part corresponds to a classical potential, but additionally the generator
contains a conservative part corresponding to a different possibly nonclassical po-
tential. In general, for an infinite-dimensional system still no construction of jump
type dynamics exists which would be symmetric for a Gibbs state associated to
a generic nonclassical potential. Some interesting general constructions, based on
application of Dirichlet form theory [13], are provided in [14, 44] (see also references
therein).

A study of diffusion type dynamics providing a construction and ergodicity results
were given in [34], including generators associated to a family of noncommuting
fields, but not a priori symmetric with respect to an ▲2 scalar product associated
to a given state.

Another recent examples of dissipative dynamics for infinite boson systems can
be found in [7, 41].

One of the important techniques developed to study ergodicity of dissipative
dynamics of infinite classical interacting systems is based on use of hypercontractivity
property or its infinitesimal form encoded in log–Sobolev inequality ([24] and
references therein). A noncommutative basis for such theory was introduced in
[42]. Since then, in noncommutative setup some progress was achieved in studying
certain directions ([2, 9, 11, 12]) with interesting new results emerging in connection
to quantum information theory ([29, 30]). Still many important technical aspects
necessary to effective implementation of the theory remain elusive in noncommutative
world. (This includes e.g. the product and perturbation properties of log–Sobolev
inequality.)

In Sections 2 and 3, we study finite- and infinite-dimensional systems for which
we construct dissipative dynamics described by Dunkl type generators and provide
certain basic ergodicity results. In Section 4 we give an example of such dissipative
dynamics in noncommutative setup. In Section 5 we discuss some nonlinear classical
dissipative dynamics and theirs noncommutative counterparts. In Appendix we provide
some discussion of monotone convergence in noncommutative ▲p spaces.
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2. Dunkl type Markov generators and semigroups

In this section we discuss linear dissipative dynamics associated to Markov
generators of the following form

L ≡
∑

i∈R
Li

defined on a dense domain of the space of bounded continuous functions C(�) on a
product space � ≡ ×i∈R�i with �i ∼ �0 is a smooth manifold of finite dimension
n, where the indices i form a countable, possibly infinite, set R, and

Li ≡ T
2
i − βi · Ti

with Ti ≡ ∇i + Ai , where ∇i denotes the gradient operator and

(Aif )l ≡
κ

xi,l

(f − f ◦ σi,l)

with σi,l ◦ σi,l = id, σi,l(xi,l) = −xi,l , l = 1, . . . , n, are both acting on i-th coordi-
nate, while βi’s are dependent possibly on many coordinates and are continuously
differentiable. First of all we notice that we have

ŴLi
(f ) ≡

1

2
(Lif

2 − 2fLif ) = |∇if |2 +
1

2κ
(Aif )2 − βi ·

1

2
(Aif

2 − 2f Aif ).

We note that, unlike as in the diffusion case, the first-order term gives a nontrivial
contribution. Since for A type component we have

Ai,lf
2 − 2f Ai,lf =

κ

xi,l

((f 2 − f 2 ◦ σi,l) − 2f (f − f ◦ σi,l))

= −
κ

xi,l

(f − f ◦ σi,l)
2 = −

xi,l

κ
(Ai,lf )2,

so we get

ŴL(f ) ≡
∑

i

(
|∇if |2 +

∑

l

1

2κl

(1 + βi,l · xi,l)(Ai,lf )2

)

which is nonnegative if for all i, l we have

1 + βi,l · xi,l ≥ 0.

Next we note that at a minimum point ω̃ for which components are outside reflection
set, we have

−βi,l · Ai,lf = +βi,l · xi,lκl

(
f ◦ σi,l(ω̃) − f (ω̃)

x2
i,l

)
.

Thus, assuming ∇i,lxi,l = 1, we have

(T2
i,l − βi,lTi,l)f = (ω̃),

∇2
i,lf (ω̃) +

2κl

xi,l

∇i,lf (ω̃) +
κl

x2
i,l

(f ◦ σi,l(ω̃) − f (ω̃)) − βi,l · ∇i,lf (ω̃)

+βi,l ·xi,l

κl

x2
i,l

(f ◦σi,l(ω̃)−f (ω̃)) = ∇2
i,lf (ω̃)+

κl

x2
i,l

(1+βi,l ·xi,l)(f ◦σi,l(ω̃)−f (ω̃)) ≥ 0
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under the same condition for the coefficients as before. Using suitable limiting
procedure, one obtains similar result if any component of the minimum point
belongs to the reflection invariant set.
Hence we get the following condition for L being a Markov generator.

THEOREM 1. Suppose for all i, l we have

1 + βi,lxi,l ≥ 0.

Then
ŴL(f ) ≥ 0

and L satisfies the minimum principle, i.e. at a minimum point ω̃ ∈ �,

(Lf )(ω̃) ≥ 0.

REMARK 1. Note that positivity of canonical quadratic form implies minimum
principle for functions f for which (f −min f )1/2 is in the domain of the generator.

EXAMPLE 1. Suppose � ≡ R
R and

Aif =
κ

ωi

(f − f ◦ σi)

with κ > 0 and σi(ω)j = (−1)δij ωj . Suppose

βi = a2n+1ω
2n+1
i +

∑

m=2,..,2n

amωm
i + M̃ωi +

∑

O:O∋i

bO

∏

k∈O

ς(ωk),

where a2n+1 > 0, am ∈ R, n ≥ 1, and bO ∈ R
+, with finite sets O, and

supj

∑
O:O∋j |bO | < ∞, where ς(x) = xχx∈[−1,+1] + χx∈[+1,∞] − χx∈(−∞,−1] and

with M̃ > 0. Then conditions of the above theorem are satisfied provided the
coefficients am, m = 2, .., 2n, are sufficiently small in absolute value. (It should be
clear that one can add to such βs a sufficiently small continuous bounded functions
without harming the conditions of the theorem.)

Since L is densely defined and vanishes on constants, it is a Markov (pre-)
generator. Thus one can expect that the corresponding semigroup Pt ≡ etL can be
well-defined C0-Markov semigroup on the space of bounded (uniformly-)continuous
functions. If the dimension of the space is finite this is fine; in infinite dimensions
this requires more arguments which will be discussed later.

3. Generalised gradient bounds

Given a Markov semigroup introduced in the previous section and assuming that
it provides some mild smoothing properties, it would be interesting to consider
a problem when the following generalised gradient type bounds can be satisfied

Ŵ̃(Ptf )q ≤ Ce−mtPt Ŵ̃(f )q,

where Ŵ̃ is a quadratic form involving first-order operators, C ∈ R
+, m ∈ R and

q ∈ [ 1
2
, 1] are constants independent of f and t ∈ R

+. In particular, one could
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ask this question for the canonical Ŵ form associated to the Markov generator or
a form |Tf |2 ≡

∑
i |❚if |2. Similar bounds involving differential operators may have

a variety of applications including ergodicity theory (cf. [16]) or certain smoothing
properties of the semigroup (see e.g. [5, 6, 17, 27, 36] and references therein).
Even in the case of diffusion operators in finite dimensions it is a hard problem
for which a relatively satisfactory solution currently only exists in case of (products
of) Heisenberg type groups; for q = 1

2
the other groups constitute a formidable

challenge. Therefore one can expect that our case is even more challenging. Thus,
to gain at least some intuition, we discuss here a simplified situations starting from
a case of single field and one reflection.

With a function η such that η ◦ σ = −η and Xη = ε, for some constant
ε ∈ (0, ∞), we set

Aσ (f ) ≡ A(f ) ≡
f − f ◦ σ

η
, T ≡ X + A

and
L ≡ T 2 − βηT , β > 0.

Then one has

(Tf ) ◦ σ = −T (f ◦ σ), (Lf ) ◦ σ = L(f ◦ σ).

Now for fs ≡ Psf , we have

∂sPt−s |Tfs |2 = Pt−s(−L|Tfs |2 + 2Tfs · TLfs)

= Pt−s(−2Ŵ(Tfs) + 2Tfs · [T ,L]fs) ≤ Pt−s(2Tfs · [T ,L]fs)

with use of
−2Ŵ(Tfs) ≡ −L|Tfs |2 + 2Tfs · LTfs ≤ 0.

Next note that

[T ,L]g = [T , T 2 − βηT ]g = −β[T , η]T g = −β(εT g + 2(T g) ◦ σ).

Thus
∂sPt−s |Tfs |2 ≤ −2βPt−s(Tfs · (εTfs + 2(Tfs) ◦ σ)). (1)

Repeating our computation for fs ◦ σ ≡ (Psf ) ◦ σ ,

∂sPt−s(|(Tfs)|2 ◦ σ) = Pt−s(−L(|Tfs |2 ◦ σ) + 2(Tfs) ◦ σ(TLfs) ◦ σ)

= Pt−s(−2Ŵ((Tfs) ◦ σ) + 2(Tfs) ◦ σ((TLfs) ◦ σ − L(Tfs ◦ σ)))

= Pt−s(−2Ŵ((Tfs) ◦ σ) + 2(Tfs) ◦ σ(([T ,L]fs) ◦ σ))

≤ −2βPt−s((Tfs) ◦ σ · (2(Tfs) + ε(Tfs) ◦ σ))). (2)

Adding (1) and (2), we obtain

∂sPt−s(|(Tfs)|2 + |(Tfs)|2 ◦ σ) ≤ −2(2 + ε)βPt−s(|(Tfs)|2 + |(Tfs)|2 ◦ σ).

Integrating this differential inequality, yields

(|(Tfs)|2 + |(Tfs)|2 ◦ σ) ≤ e−2(2+ε)βtPt(|Tf |2 + |Tf |2 ◦ σ).
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Next, (although there is no doubt that what follows below can be done for general
case of classical (finite) Coxeter groups of Dunkl theory), to focus our attention
we consider the case of products of real lines each with a single natural reflection.
That is we consider

Tif ≡ (∇i + Ai)f

with ∇i denoting partial derivative with respect to i-th coordinate and

Aif ≡ κ
f − f ◦ σi

ωi

with a reflection defined by

(σiω)j ≡ (−1)δij ωj .

In this setup we note the following relation, in which we set fs ≡ Psf ,

∂sPt−s |Tifs |2 = Pt−s(−L|Tifs |2 + 2Tifs · TiLfs)

= Pt−s(−2Ŵ(Tifs) + 2Tifs · [Ti,L]fs)

≤ Pt−s(2Tifs · [Ti,L]fs)

where in the last step we have used the fact that

−2Ŵ(Tifs) ≡ −L|Tifs |2 + 2Tifs · LTifs ≤ 0.

We remark that in the current setup where all directions in the tangent space are
represented in the generator, we can afford to disregard otherwise vital nonpositive
term −2Ŵ(Tifs). Next we note that, by our current assumption

[Ti,Lj ]g = [Ti, T
2
j − βjTj ]g = −[Ti, βj ]Tjg

= −(∇iβj )Tjg − Ai(βj )(Tjg) ◦ σi .

Combining this with our previous bounds, we obtain the relation

∂sPt−s |Tifs |2 ≤ −2Pt−s((∇iβi)|Tifs |2) − 2Pt−s (Ai(βi)Tifs · (Tifs) ◦ σi)

− 2
∑

j 6=i

Pt−s

(
(∇iβj )Tifs · Tjfs

)

− 2
∑

j 6=i

Pt−s

(
Ai(βj )Tifs · (Tjfs) ◦ σi

)
.

As compared to a conventional situation, where reflections are not in the game, we
have now got a trouble in the form of terms containing reflected factors. In case
when βj =

∑
k Gjkωk + ηj with Gii > 0 and Gjk sufficiently small, and ηj are

sufficiently small cylinder functions, at this point we could use quadratic inequality
to separate terms containing |Tifs |2 and get the following bound,

∂sPt−s |Tifs |2 ≤ −2αPt−s |Tifs |2 + Pt−s

(
Ai(βi)|Tifs ◦ σi |2

)

+
∑

j 6=i

Pt−s

(
|∇iβj ||Tjfs |2

)
+

∑

j 6=i

Pt−s

(
|Ai(βj )||(Tjfs) ◦ σi |2

)
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with a constant

α ≤ inf
i

(
∇iβi −

1

2

∑

j 6=i

|∇iβj | −
1

2

∑

j

|Ai(βj )|
)

.

Solving this inequality with respect to Pt−s |Tifs |2, after integration with respect to
s ∈ [0, t] and using supremum bounds for the coefficients, we arrive at

|Tift |2 ≤ e−αtPt |Tif |2 + ‖Ai(βi)‖∞

∫ t

0

dse−α(t−s)Pt−s |Tifs ◦ σi |2

+
∑

j 6=i

‖Ai(βj )‖∞

∫ t

0

dse−α(t−s)Pt−s |(Tjfs) ◦ σi |2.

At this stage, if Pt is a Markov semigroup, one can pass to the following supremum
bounds,

‖Tift‖2
∞ ≤ e−αt‖Tif ‖2

∞ + ‖Ai(βi)‖∞

∫ t

0

dse−α(t−s)‖Tifs‖2
∞

+
∑

j 6=i

‖Ai(βj )‖∞

∫ t

0

dse−α(t−s)‖Tjfs‖2
∞.

This relation allows us to show existence of a semigroup in infinite dimensions as
well as uniform ergodicity in sup norm if additionally α > 0 ([16, 52]).

Unbounded drifts

In what follows we would like to improve on that above by allowing nonlinear
unbounded drifts βi’s as well as getting suitable pointwise bounds. To this end
we will keep on an assumption that symmetric parts (βj + βj ◦ σi) are zero or
sufficiently small. Now we propose to consider simultaneously reflected terms, as
follows,

∂sPt−s |Tifs ◦ σi |2 = Pt−s(−L|Tifs ◦ σi |2 + 2(Tifs) ◦ σi · (TiLfs) ◦ σi)

= Pt−s(−2Ŵ(Tifs ◦σi)+2(Tifs)◦σi ·([Ti,L]fs)◦σi

+2(Tifs)◦σi ·((LTifs)◦σi −L(Tifs ◦σi)))

= Pt−s(−2Ŵ(Tifs ◦σi)+2(Tifs)◦σi ·{(−(∇iβi)Tifs −Ai(βi)(Tifs)◦σi)◦σi})
+

∑

j 6=i

2Pt−s((Tifs)◦σi ·{(−(∇iβj )Tjfs −Ai(βj )(Tjfs)◦σi)◦σi})

+Pt−s2

(
(Tifs)◦σi ·

(
(βi +βi ◦σi)Ti((Tifs)◦σi)+

∑

j 6=i

(βj +βj ◦σi)Tj ((Tifs)◦σi)

))
.

Since, with some constant C ∈ (0, ∞), one has

|Tig|2 ≤ CŴi(g),
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as long as γ ≡ supi

∑
j ||βj + βj ◦ σi ||2∞ < ∞, with the use of quadratic inequality

we see that

− 2Ŵ(Tifs ◦ σi)

+ 2

(
(Tifs) ◦ σi ·

(
(βi + βi ◦ σi)Ti((Tifs) ◦ σi) +

∑

j 6=i

(βj + βj ◦ σi)Tj ((Tifs) ◦ σi)

))

≤
C

2
γ |Tifs ◦ σi |2.

This allows us to get

∂sPt−s |Tifs ◦ σi |2 ≤ −2Pt−s

((
(∇iβi) ◦ σi −

C

4
γ

)
|Tifs ◦ σi |2

)

− 2Pt−s((Ai(βi) ◦ σi)(Tifs) ◦ σi · (Tifs))

− 2
∑

j 6=i

Pt−s

(
(Tifs) ◦ σi ·

{(
((∇iβj ) ◦ σi)(Tjfs) ◦ σi + Ai(βj ) ◦ σi(Tjfs)

)})
.

This together with similar bound for ∂sPt−s(Tifs) obtained before, yields

∂sPt−s(|Tifs |2 + |Tifs ◦ σi |2)

≤ −2Pt−s((∇iβi)|Tifs |2) − 2Pt−s

((
(∇iβi) ◦ σi −

C

4
γ

)
|Tifs ◦ σi |2

)

− 2Pt−s ((Ai(βi) + Ai(βi) ◦ σi)Tifs · (Tifs) ◦ σi)

− 2
∑

j 6=i

Pt−s

(
(∇iβj )Tifs · Tjfs

)
− 2

∑

j 6=i

Pt−s

(
Ai(βj )Tifs · (Tjfs) ◦ σi

)

− 2
∑

j 6=i

Pt−s

(
((∇iβj ) ◦ σi)(Tifs) ◦ σi · (Tjfs) ◦ σi

)

− 2
∑

j 6=i

Pt−s

(
Ai(βj ) ◦ σi(Tifs) ◦ σi · (Tjfs)

)
.

We can simplify that by using the quadratic inequality to have

∂sPt−s(|Tifs |2 + |Tifs ◦ σi |2) ≤ −2MPt−s(|Tifs |2 + |Tifs ◦ σi |2)
+

∑

j 6=i

γijPt−s(|Tjfs |2 + |(Tjfs) ◦ σi |2)

provided that

(∇iβi) + (∇iβi) ◦ σi −
1

2
|Ai(βi) + Ai(βi) ◦ σi | −

1

2

∑

j 6=i

γij −
C

4
γ ≥ M

and where we set
γij ≡ ‖∇iβj‖∞ + ‖Ai(βj )‖∞.
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Now we are in much better shape than before. This is because the first condition
allows for βi other than linear, for example including

βi = a2n+1ω
2n+1
i +

∑

l=2,..,2n

alω
l
i + M̃ωi +

∑

k 6=i

Gikωk +
∑

O:O∋i

bO

∏

k∈O

ς(ωk),

where a2n+1 > 0, n ≥ 1, and al, bO ∈ R, with finite sets O, and supj

∑
O:O∋j |bO | <

∞, where ς(x) = xχx∈[−1,+1] + χx∈[+1,∞] − χx∈(−∞,−1] and finally with M̃ > 0.
Thus, for such drift coefficients βi , integration with respect to s of our differential
inequality yields the following,

|Tift |2 + |Tift ◦ σi |2 ≤ e−2MtPt(|Tif |2 + |Tif ◦ σi |2)

+
∑

j 6=i

γij

∫ t

0

dse−2M(t−s)Pt−s(|Tjfs |2 + |(Tjfs) ◦ σi |2).

From this we get the the following bound as a simple implication.

LEMMA 1.

‖Tift‖2
∞ ≤ 2e−2Mt‖Tif ‖2

∞ +
∑

j 6=i

2γij

∫ t

0

dse−2M(t−s)‖Tjfs‖2
∞.

With this inequality, via standard arguments, see e.g. [16, 49, 51] and references
therein, one obtains finite speed of propagation of information which allows to
show the existence of the semigroup in infinite dimensions and, under additional
assumptions, existence of invariant measure and strong ergodicity. That is one has
the following result.

THEOREM 2. Suppose M, γij ∈ R with γij > 0 and supi

∑
j γij < ∞. Then the

Markov semigroup Pt is well defined in infinite dimensions. Moreover, if M > 0
and supi

∑
j γij > 0 is sufficiently small, then there exists m ∈ (0, ∞) such that

‖Tft‖2
∞ ≤ 2e−2mt‖Tf ‖2

∞

with
‖Tg‖2

∞ ≡
∑

i

‖Tig‖2
∞.

In this case there exists a unique measure µ with finite moments such that

‖ft −
∫

f dµ‖2
∞ ≤ e−2mtC(‖Tf ‖∞)

for any cylinder function f with bounded ‖Tif ‖2
∞ with some constant C(‖Tf ‖∞) ∈

(0, ∞) independent of t ∈ (0, ∞).

Now we get back to our symmetrised with respect to σi inequality in our
claim and notice that, at least when our Coxeter group generated by reflections is
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finite, one could consider full symmetrisation to get after resummation the following
Gronwal type inequality

‖Tft‖2
Cox ≤ e−2M̂tPt‖Tf ‖2

Cox +
∑

j 6=i

γ̂ij

∫ t

0

dse−2M̂(t−s)Pt−s‖Tfs‖2
Cox

with
‖Tg‖2

Cox ≡
∑

i

∑

c∈Cox

|Tig ◦ c|2

A simple application of this yields the following bound.

CLAIM. With some m̂ ∈ R,

‖Tft‖2
Cox ≤ e−2m̂tPt‖Tf ‖2

Cox.

One may expect that similar bound could be possible for square of a seminorm
in which we sum over i and composition with c is replaced by projections (on
subspaces obtained via symmetrisation subordinated to Cox). One may hope that the
last could possibly survive also in the case when the Coxeter group is infinite (at
least on some smaller class of functions which are sufficiently quickly decreasing
to zero with the size of c ∈ Cox). This is for a moment an interesting, challenging
and widely open problem.

REMARK 2. A theory of dissipative semigroups generated by Dunkl type operators
associated to noncommutative groups was recently developed in [52] and [53].

4. Quantum Dunkl type generators

In this section we provide a description of linear dissipative semigroup with
Dunkl type generators in a noncommutative algebra A. While the principal objective
here is to provide a new noncommutative model, one could also potentially hope
for a possible application of such models to quantum information theory.

Let σj ∈ A, j ∈ I , be such that σ ∗
j = σj , σ 2

j = 1 and {σj , σk} = 0. Define maps

A ∋ f → Sjk(f ) ≡ σjf σk ∈ A.

Then we have

S
2
jk = I and Sjk(fg) = Sjk(f )Skk(g) = Sjj (f )Sjk(g).

Define

AL
jk(f ) ≡ κjk(f − Sjk(f )) and AR

jk(f ) ≡ (f − Sjk(f ))κ̃jk

with Sjj (κjk) = −κjk and Skk(κ̃jk) = −κ̃jk . Then we have

AL
jk(A

L
jk(f )) = AL

jk(κjk(f − Sjk(f )))

= κjk(κjk(f − Sjk(f )) − Sjk(κjk(f − Sjk(f )))).
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Since

Sjk(κjk(f − Sjk(f ))) = −κjk(Sjk(f ) − S
2
jk(f )) = −κjk(Sjk(f ) − f )

= κjk(f − Sjk(f ))

we obtain
AL

jk(A
L
jk(f )) = 0.

Similarly we have
AR

jk(A
R
jk(f )) = 0.

We also note that

AR
jk(A

L
jk(f )) = AR

jk(κjk(f − Sjk(f )))

= (κjk(f − Sjk(f )) − Sjk(κjk(f − Sjk(f ))))κ̃jk

= (κjk(f − Sjk(f )) − (κjk(f − Sjk(f ))))κ̃jk = 0

and similarly
AL

jk(A
R
jk(f )) = 0.

Next consider a derivation δl(f ) ≡ [σl, f ], which satisfies

δl(σj ) = 2σlσj (1 − δlj ).

Then, for l 6= j, k, we have

δl(Sjk(f )) = δl(σjf σk) = δl(σj )f σk + σjδl(f )σk + σjf δl(σk)

= −2σjσlf σk + σjδl(f )σk + σjf 2σlσk = −σjδl(f )σk

= −Sjk(δl(f )).

That is Sjk is a reflection in the sense of [52, 53] (in the direction of “tangent
vector” δl). Using this we can introduce the following generalised derivations,

❚f ≡ ∇f +❆(f )

with components ❚l ≡ ∇l +❆l , l ∈ I , defined by ∇l = δl and

❆l ≡ AL
jk + AR

jk.

We define an operator

Llf ≡ ❚2
l f = (δ2

l + δl❆l +❆lδl)f ≡ L0f + {∇l,❆l}f

and its associated quadratic form

ŴLl
(f ) ≡

1

2
(Ll(f

∗f ) − Ll(f
∗)f − f ∗Ll(f )).

Note that
ŴLl

(f ) ≡ −(δl(f ))∗δl(f ) + Ŵ{δl ,❆l}(f )
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where

Ŵ{δl ,❆l}(f ) ≡
1

2
({δl,❆l}(f ∗f ) − {δl,❆l}(f ∗)f − f ∗{δl,❆l}(f ))

= Ŵ{δl ,❆L
l

}(f ) + Ŵ{δl ,❆R
l

}(f ).

Since, using reflection property δl(Sjk(f )) = −Sjk(δl(f )), we have

{δl,❆
L
l }(f ) = 2κjkδl(f ) + δl(κjk)(f − Sjk(f ))

so

1

2
({δl,❆

L
l }(f ∗f )−{δl,❆

L
l }(f ∗)f −f ∗{δl,❆

L
l }(f )) = 2[κjk,f

∗]δl(f )

+
1

2

(
δl(κjk)(f

∗f −Sjk(f
∗f ))− δl(κjk)

(
f ∗ −Sjk(f

∗)
)
f −f ∗δl(κjk)(f −Sjk(f ))

)
.

The second part on the right-hand side can be represented as

1

2

(
δl(κjk)(f

∗f − Sjk(f
∗f )) − δl(κjk)

(
f ∗ − Sjk(f

∗)
)
f − f ∗δl(κjk)(f − Sjk(f ))

)

= −
1

2
δl(κjk)(f

∗ − Sjk(f
∗)) · (f − Sjk(f ))

+
1

4
δl(κjk)(Sjk(f

∗)(Sjk(f ) − Skk(f )) + (Sjk(f
∗) − Sjj (f

∗))Sjk(f ))

+
1

2
([δl(κjk), f

∗](f − Sjk(f ))).

In particular, we see that for a special case j = k, we obtain

1

2

(
δl(κjk)(f

∗f − Sjk(f
∗f )) − δl(κjk)

(
f ∗ − Sjk(f

∗)
)
f − f ∗δl(κjk)(f − Sjk(f ))

)

= −
1

2
δl(κjj )(f − Sjj (f ))∗ · (f − Sjj (f )) +

1

2
([δl(κjj ), f

∗](f − Sjj (f ))),

and hence we have

Ŵ{δl ,❆L
l

}(f ) = −2([κjj,f ])∗δl(f ) −
1

2
δl(κjj )(f − Sjj (f ))∗ · (f − Sjj (f ))

+
1

2
([δl(κjj ), f

∗](f − Sjj (f ))).

Similarly, we have

Ŵ{δl ,❆R
l

}(f ) = 2δl(f
∗)[κ̃jk, f ]

+
1

2

(
(f ∗f − Sjk(f

∗f ))δl(κ̃jk) −
(
f ∗ − Sjk

(
f ∗)) δl(κ̃jk)f − f ∗(f − Sjk(f ))δl(κ̃jk)

)
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and

1

2

(
(f ∗f − Sjk(f

∗f ))δl(κ̃jk) −
(
f ∗ − Sjk

(
f ∗)) δl(κ̃jk)f − f ∗(f − Sjk(f ))δl(κ̃jk)

)

= −
1

2
((f ∗ − Sjk(f

∗))(f − Sjk(f )))δl(κ̃jk)

+
1

4

((
Sjk(f

∗)(Sjk(f ) − Skk(f )) +
(
Sjk(f

∗) − Sjj (f
∗)

)
Sjk(f )

)
δl(κ̃jk)

)

+
1

2
(f ∗ − Sjk(f

∗))[δl(κ̃jk), f ].

Again, for j = k 6= l, we can simplify this expression as

1

2

(
(f ∗f − Sjk(f

∗f ))δl(κ̃jk) −
(
f ∗ − Sjk

(
f ∗)) δl(κ̃jk)f − f ∗(f − Sjk(f ))δl(κ̃jk)

)

= −
1

2
((f ∗ − Sjj (f

∗))(f − Sjj (f )))δl(κ̃jj ) +
1

2
(f ∗ − Sjj (f

∗))[δl(κ̃jj ), f ].

Hence we get

Ŵ{δl ,❆R
l

}(f ) = −2(δl(f ))∗[κ̃jj , f ] −
1

2
(f − Sjj (f ))∗ · (f − Sjj (f ))δl(κ̃jj )

+
1

2
(f ∗ − Sjj (f

∗))[δl(κ̃jj ), f ].

Assuming
κjj = κσl and κ̃jj = κ̃σl,

combining our calculations we arrive at

ŴLl
(f ) = −(1 − 2κ − 2κ̃)(δl(f )∗)δl(f )

which is nonpositive provided 2κ + 2κ̃ ≤ 1. Thus an operator

Lf ≡ ❚
2f ≡

∑

l

❚
2
l f

is Markovian. We remark that in general the operators ❚l may not commute (and
thus we are in general setup of [53]).

5. On nonlinear dissipative dynamics

To begin we mention first that in [48] an interesting nonlinear dissipative dynamics
of jump type was introduced and studied for infinite interacting systems of classical
spins on a lattice. The generator of this dynamics is formally given by

Lf ≡
∑

l∈❩d

(❊l − ■)(f )
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where

❊lf ≡
1

β
log EX+le

βf

with EX+l denotes a conditional expectation given a configuration of the system
in ❩d \ {X + l} associated to a Gibbs measure and β ∈ ❘ \ {0}. (The elementary
operator in the sum can be understood as a Glauber type generator corrected by
the relative entropy part.) One can show that the corresponding semigroup Pt ≡ etL

preserves unit and positivity and it was demonstrated there that, under suitable
mixing condition, the corresponding dynamics is exponentially ergodic [48]. Without
getting into more detail, a more extensive description can be found in [55], such
kind of dynamics could prove to be interesting in relation to certain optimization
problems, see also a work [39] for some other application of nonlinear averages to
economy.

A desire to construct and understand nonlinear noncommutative dissipative dy-
namics led to the paper [33] where in particular the following result was proved.
For Ei, i = 1, ..., n, being linear, positive and unital operators on a C∗ algebra A,
we define L : D(F) → A,

L(x) =
n∑

i=1

αi log Ei(e
x) − x,

with
D(F) = Asa ∩ K(x, r) ≡ {y ∈ A : ‖x − y‖ < r}, r > 0,

and αi ≥ 0,
∑n

i=1 αi = 1. Note that L − (er − 1)I is strictly dissipative because

‖ log Ei(e
x2) − log Ei(e

x1)‖ ≤ er‖x2 − x1‖,
and so,

∀ϕ ∈ J (x2 − x1) ≡ (tangent functionals at x2 − x1),

R〈ϕ, F (x2) − F(x1)〉 =
n∑

i=1

αiR〈ϕ, log Ei(e
x2) − log Ei(e

x1)〉 − ‖x2 − x1‖

≤
n∑

i=1

αi‖ log Ei(e
x2) − log Ei(e

x1)‖ − ‖x2 − x1‖

≤ (er − 1)‖x2 − x1‖.
Moreover, one-point dissipativity also holds

∀x ∈ D(F)\{0}∀ϕ ∈ J (x),

R〈ϕ, F (x)〉 =
n∑

i=1

αiR〈ϕ, log Ei(e
x)〉 − ‖x‖ ≤

n∑

i=1

αi‖ log Ei(e
x)‖ − ‖x‖ ≤ 0.

Hence we have the following result (see [33] for details).
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THEOREM 3. The operator

L(x) =
n∑

i=1

αi log Ei(e
x) − x,

generates a Lipschitz semigroup St : D(F) → D(F) which is contractive and
preserves unit and positivity, i.e. (St)t≥0 is a conservative Markov semigroup.

It is a challenging problem to obtain an infinite-dimensional extension of this
result and ergodicity theory for the corresponding semigroup.

REMARK 3. It is also an interesting open question, if it could be possible
to extend a classical nonlinear annealing algorithm of [55] to study a challenging
problem of determining ground states for large interacting quantum systems.

A theory of nonlinear dissipation for infinite-dimensional interacting systems has
been developed over time in [18, 21] and recently in [19]. In particular in the last
work we have used log-Sobolev inequality to provide a solution of reaction-diffusion
(R-D) type problem when, first of all the underlying space is infinite-dimensional
and secondly, when one can have different type of mixing. That is we have studied
a system

∂tui = Liui + (βi − αi)

(
k

q∏

j=1

u
αj

j − l

q∏

j=1

u
βj

j

)
,

where i = 1, . . . , q; αi, βi ∈ ❘+, βi 6= αi ; and Li an operator which models how
the i-th substance diffuses, with a key assumption being that these generators satisfy
the log-Sobolev inequality

µ

(
f 2 log

f 2

µf 2

)
≤ ciµ(f (−Lif ))

with a given probability measure µ and a constant ci ∈ (0, ∞) independent of
a function f .

This inequality played in the past an essential role in the development of
ergodicity theory for infinite spin systems on a lattice, see e.g. [24, 47], and it is
expected that it will be similar in the discussed case of R-D systems [20].

As we mentioned in Introduction, a general theory for the log-Sobolev inequal-
ity and associated hypercontractivity property for corresponding linear dissipative
semigroups in noncommutative algebras was introduced and initially studied in [42].
In general there is still a number of elements well known for classical case, but
hard to get in the noncommutative case. One of them, the equivalence of the
log-Sobolev inequality to Sobolev–Orlicz type inequalites (as introduced in [8]),
was recently obtained in [2], but still there are many other (including perturbation
and product property) awaiting to be understood. One of the possibly promising
direction of the progress should be the one including the systems with classical
potentials for which jump type dynamics can be well defined for the infinite system.
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In this case one can expect that for any local observable f we have the following
limit

lim
n→∞

Ein . . . Ei1
f = ω(f ),

where Ej denotes a completely positive map given by a generalised conditional
expectation which is symmetric in ▲2,1/2(ω) space, with suitable sequence (ik)k∈◆
“going infinitely many times through each site of a lattice” in the sense of [51].
(In Appendix we discuss briefly some matters related to this and other type of
limits involving generalised conditional expectation given by completely positive
map.)

Appendix. Towards the martingale convergence theorem in noncommutative ▲p

spaces

At this point it is interesting to notice the joint monotonicity inequalities for
▲p,1/2(ω) norms obtained in [2], with ω ≡ Tr(ρ·) ≡ Tr(P −1·) where P = P ∗ > 0

with Tr P −1 = 1.

THEOREM 4. ∀α ∈ [0, 1], ∀r = 2n, n ∈ N,

Tr |ϕ(P )−(1−α)/rϕ(f )ϕ(P )−α/r |r ≤ Tr |P −(1−α)/rf P −α/r |r ≡ ‖f ‖P−1,α,r

where ϕ is a completely positive mapping.
Let

〈f, g〉P,α ≡ Tr(P −(1−α)f ∗P −αg) = Tr((P −α/2f P −(1−α)/2)∗(P −α/2gP −(1−α)/2))

and
EX,α(f ) ≡ TrX(γ ∗

X,α,Lf γX,α,R)

with
γX,α,R ≡ P −(1−α)(TrX P −1)−(1−α) ≡ γ ∗

X,1−α,L.

Then we have

〈EX,α(f ), EX,α(g)〉EX,α(P ),α = Tr(EX,α(P )−(1−α)EX,α(f )∗EX,α(P )−αEX,α(g))

with

EX,α(P ) = TrX(((TrX P −1)−α)P −αPP −(1−α)(TrX P −1)−(1−α))

= TrX((TrX P −1)−1) = (TrX P −1)−1.

In particular, for α = 1
2
, we have EX,α(·) is a completely positive map.

The product case

We consider first a product state given by

P ≡ ⊗n
k=1Pk,

where Pk ≡ PXk
∈ AXk

, k = 1, . . . , n, are commuting positive matrices s.t.

TrXk
P −1

k = 1, and for n > j ∈ ◆ set P≥j ≡ ⊗j

k=1Ik ⊗n
k=j+1 Pk and P≥n ≡ I .



LINEAR AND NONLINEAR DISSIPATIVE DYNAMICS 393

Then, we have
j∏

k=1

EXk ,α(P ) ≡ E≥j,α(P ) = P≥j .

In the current situation

γXk ,α,R ≡ P −(1−α)(TrXk
P −1)−(1−α) = P

−(1−α)
Xk

,

EXk ,α(f ) = TrXk
(P −α

Xk
f P

−(1−α)
Xk

) = TrXk
(P −1

Xk
f ).

In a special case α = 1
2
, we will omit the index α writing EXk

(f ) ≡ EXk ,1/2(f )
and ‖f ‖r ≡ ‖f ‖1/2,r . The monotonicity result above, yields

‖E≥j (f )‖E≥j (P )−1,r = ‖EXj
E≥j−1(f )‖EXj

E≥j−1(P )−1,r

≤ ‖E≥j−1(f )‖E≥j−1(P )−1,r .

For j = n, we have
‖E≥n(f )‖E≥n(P )−1,r = ‖E≥n(f )‖I,r

and
E≥n(f ) = Tr(P −1f ) ≡ ω(f ).

Naturally this can be generalised to infinite product states with the claim that

lim
j→∞

‖E≥j (f )‖E≥j (P )−1,r = |ω(f )|

for any local observable f .

Next consider a family of completely positive operator of the form

EX(f ) = TrX(γ ∗
Xf γX), X ⊂⊂ R

which are symmetric in ▲2(ω) ≡ ▲
2, 1

2
(ω) and unital. Let us assume that there

exists a commutative subalgebra Ac such that γX ∈ Ac and EX(Ac) ⊆ Ac. Suppose
a family {EX}X∈R0

, for some countable R0 ( R, is ergodic in the sense that

∀f ∈ Ac, lim
n→∞

EXn . . . EX1
(f ) = ω(f ) (3)

and ∀g ∈ A0 , with a dense subalgebra A0 ⊂ A, ∃n ∈ ◆, EXn . . . EX1
(g) ∈ Ac ∩A0.

Then, for f = EXm . . . EX1
(g) ∈ Ac ∩ A0 given by g ∈ A0 with some m ∈ ◆, we

have

lim
n→∞

EXn . . . EX1
(f ) = ω(f ) = ω(EXm . . . EX1

(g)) = 〈❧, EXm . . . EX1
(g)〉2,ω.

Since by our assumption EX are symmetric and unital, by induction we get

〈EXm(❧), EXm−1
. . . EX1

(g)〉2,ω = 〈❧, EXm−1
. . . EX1

(g)〉2,ω = 〈❧, g〉2,ω = ω(g).

In particular, this idea can be used for a system with classical interaction, i.e. when
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for f ∈ A0,
ω(f ) ≡ lim

3→R

Tr(e−U3f )/ Tr(e−U3)

with

U3 ≡
∑

X∩36=∅
8X, and 8X ∈ Ac ∩ A0 with sup

i∈R

∑

X⊂R, X∋i

‖8X‖A < ∞;

and one is given a family

{TrX : X ⊂ R, |X| < ∞| Tr(TrX(f )) = Tr(f ), TrX TrX(f ) = TrX(f ), TrX(❧) = ❧} .

When restricted to Ac, the corresponding structure reduces to the one known in the
classical Gibbs measure theory. In particular all EX act as the classical conditional
expectations and one can formulate for them conditions which assure that the
ergodicity (3) holds (cf. [24]).

In similar spirit one can also discuss more general sequences (E3n : 3n ⊂ 3n+1).
◦

Acknowledgements

During this research the author was suppported by the Royal Society Wolfson
Research Merit Award.

REFERENCES

[1] S. Albeverio, Y. G. Kondratiev and M. Röckner: Symmetrizing measures for infinite dimensional diffusions:

an analytic approach, Geometric Analysis and Nonlinear Partial Differential Equations (Stefan Hildebrandt

et al., eds.), Springer, Berlin 2003, pp. 475–486.
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[35] Xu Lihu and B. Zegarliński: Existence and Exponential mixing of infinite white α-stable Systems with

unbounded interactions, Electronic J. Probab. 15 (2010), 1994–2018; Ergodicity of finite and infinite

dimensional α-stable systems, Stoch. Anal. Appl. 27 (2009), 797–824.

[36] H.-Q. Li: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J.

Func. Analysis 236 (2006), 369–394.

[37] T. M. Liggett: Interacting Particle Systems; Stochastic Interacting Systems: Contact, Voter and Exclusion

Processes, Springer 1999.

[38] Taku Matsui: Interacting Particle Systems on Non-Commutative Spaces, pp.115-124 in M. Fannes, C.

Maes and A. Verbeure (Eds.), On Three Levels: Micro-, Meso and Macro-phenomena in Physics, Plenum

(1994), Proceedings of the ASI/ARW Workshop in Leuven, 19-23 July 1993; Purification and uniqueness

of quantum Gibbs states, Commun. Math. Phys. 162 (1994), 321–332.

[39] V. P. Maslov: Nonlinear averages in economics, Mathematical Notes, 2005 - Springer; Nonlinear averaging

axioms in financial mathematics and stock price dynamics, Theory of Probability & Its Applications, 2004

– SIAM; Quantum economics, Russian J. Math. Phys. 2006.
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[54] B. Zegarliński: Analysis of classical and quantum interacting particle systems. Quantum interacting

particle systems, River Edge, NJ, Publisher: World Sci. Publ., 2002, 241–336.
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In this paper we provide a basic introduction to the topic of quantum non-Markovian

evolution presenting both time-local and memory kernel approach to the evolution of open

quantum systems. We start with the standard notion of a classical Markovian stochastic process

and generalize it to classical Markovian stochastic evolution which in turn becomes a starting

point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible

maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-

Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several

simple examples.

Keywords: open quantum systems, Markovian semigroups, non-Markovian evolution.

1. Introduction

Isolated quantum systems are governed by the celebrated Schrödinger equation.
This, however, is rarely encountered in nature, as one is never able to perfectly
shield the system of interest from all kinds of interactions with the external world,
e.g. thermal photons, cosmic radiation, solar neutrinos or even quantum vacuum
[1–5]. Moreover, inclusion of the environment leads to several new phenomena like
decoherence, dissipation and the Lamb shift of energy levels, which are of exceptional
importance in many fields of science. The usual approach to the dynamics of an open
quantum system consists of applying the Born–Markov approximation [1, 2, 6], which
leads to a local master equation for the Markovian semigroup [7, 8]. However, recent
technological progress and modern laboratory techniques call for a more refined
approach which takes into account memory effects completely neglected in the descrip-
tion based on Markovian semigroups. There are several approaches to the so-called
non-Markovian evolution (see the recent reviews [9, 10], a collection of articles [11],
and a recent comparative analysis [12]). In recent years the issue of non-Markovianity
in quantum mechanics has observed an increasing attention — there are more than
400 papers published recently on the arXiv having non-Markovianity in the title.

In this paper we analyze basic mathematical properties of quantum evolution of
open quantum systems. The structure of this paper is the following. In Section 2

[399]
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we briefly recall the notion of classical Markovian stochastic process and introduce
Markovian stochastic evolution represented by the so-called P-divisible classical dy-
namical map (a family of stochastic matrices). We discuss both time-local description
and nonlocal one governed by the corresponding memory kernel. This provides the
starting point for the analysis of the quantum setting in Section 3, where the concept
of quantum Markovian evolution is represented by the so-called CP-divisible maps.
Interestingly, there is possibility to introduce a whole hierarchy of k-divisibilities
which characterize how much the quantum evolution departs from the Markovian
one. Section 4 provides simple methods which enable one to detect whether the
corresponding evolution is non-Markovian. These methods basically use monotonicity
property of well-known quantities under Markovian evolution. Hence, any violation
of monotonicity witnesses non-Markovianity of the corresponding evolution. Finally,
Section 5 discusses nonlocal approach governed by the quantum memory kernel. We
provide an analogue of the well-known Bernstein theorem replacing positive functions
by completely positive maps. The whole discussion is illustrated by a family of
simple and instructive examples.

2. Classical setting

The concept of Markovian evolution was originally introduced on the
level of classical stochastic processes. Let us recall that a stochastic process
{Xt | t ∈ T } is fully determined by the family of joint probability distributions
p(xn, tn; xn−1, tn−1; . . . ; x0, t0) [13–15]. The process {Xt | t ∈ T } is called Markovian
(or memoryless) if and only if the family of conditional probability distributions
p(xn, tn|xn−1, tn−1; . . . ; x0, t0) satisfy

p(xn, tn|xn−1, tn−1; . . . ; x0, t0) = p(xn, tn|xn−1, tn−1) (1)

for all t0 < t1 < . . . < tn. Quite remarkably, for Markovian processes one can
reconstruct an arbitrary multi-point probability distribution knowing only the initial
state of the system and two-point conditional probabilities

p(xn, tn; . . . ; x0, t0) =
n∏

i=1

p(xi, ti |xi−1, ti−1)p(x0, t0). (2)

One has the following well-known theorem.

THEOREM 1. Conditional probabilities of a Markov process satisfy celebrated
Chapman–Kolmogorov equation

p(x3, t3|x1, t1) =
∑

x2

p(x3, t3|x2, t2)p(x2, t2|x1, t1). (3)

Consider now the stochastic evolution of a probability vector p ∈ R
n,

p(t) = T (t)p, (4)

where T (t) is a family of stochastic matrices satisfying T (0) = In (n× n identity
matrix). Recall, that a matrix T is stochastic if Tij ≥ 0 and

∑
i Tij = 1. If additionally
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∑
j Tij = 1 it is called bistochastic or doubly stochastic. One calls a family T (t)

a classical dynamical map. In what follows we assume that T (t) satisfies linear
differential equation

d

dt
T (t) = L(t)T (t), T (0) = In, (5)

with time-local generator L(t), or linear integro-differential

d

dt
T (t) =

∫ t

0

K(t − τ)T (τ)dτ, T (0) = In, (6)

with nonlocal memory kernel K(t).

2.1. Time-local approach

The simplest example of time-local description corresponds to Markovian semi-
group T (t) = eLt , where L is time-independent generator.

DEFINITION 1. An n×n real matrix L satisfies Kolmogorov conditions iff Lij ≥ 0
for i 6= j , and

∑n
i=1 Lij = 0.

It is well known [13] that eLt defines a legitimate semigroup of stochatic matrices
if and only if L satisfies Kolmogorov conditions. Note that if T (t) = eLt , then

T (t) = T (t − s)T (s) =: T (t |s)T (s),
for any t ≥ s. a natural generalization of the above property is provided by the
definition.

DEFINITION 2. A classical dynamical map T (t) is P-divisible if

T (t2) = T (t2|t1)T (t1), (7)

and T (t2|t1) provides a stochastic matrix for an arbitrary choice of t2 > t1 ≥ 0.

It is clear that for P-divisible evolution a map T (t2|t1) is an analog of a conditional
probability for a stochastic process and equation (7) is an analogue of Chapman–
Kolmogorov equation. Therefore we have the following definition.

DEFINITION 3. A classical stochastic evolution is Markovian if and only if the
corresponding classical dynamical map T (t) is P-divisible.

It should be stressed that the above definition of Markovianity uses only a 2-
point conditional probability T (t2|t1) and hence is much weaker than the original
definition of the Markovian stochastic process (cf. [18]). Note that if the map T (t)
is invertible, then T (t2|t1) = T (t2)T

−1(t1). Moreover, the time-local generator L(t)
in (5) reads L(t) := Ṫ (t)T −1(t). One has the following well-known result.

THEOREM 2. A map T (t) satisfying classical master equation (5) is P-divisible
iff the time-local generator L(t) satisfies Kolmogorov conditions for t ≥ 0.



402 D. CHRUŚCIŃSKI and P. NALEŻYTY

Introducing πkl(t) := Lkl(t) for i 6= j one can rewrite (5) as the following Pauli
rate equation

ṗk(t) =
n∑

l=1

[πkl(t)pl(t)− πlk(t)pk(t)], (8)

where πkl(t) denotes the rate of transition from l to k.

EXAMPLE 1. Consider

L(t) =
1

2
γ (t)

(
−1 1

1 −1

)
, (9)

which satisfies Kolmogorov condition iff γ (t) ≥ 0. One easily finds for the dynamical
map

T (t) = e−Ŵ(t)I + (1 − e−Ŵ(t))J, (10)

where Ŵ(t) =
∫ t

0
γ (u)du and Jkl = 1

2
. It is clear that T (t) provides a legitimate

dynamical map iff Ŵ(t) ≥ 0 and it is P-divisible (i.e. Markovian) iff γ (t) ≥ 0. This
simple example shows that γ (t) needs not be positive for all t and hence cannot
be interpreted as a transition rate between two states.

EXAMPLE 2. The above example may be generalized as follows: consider
a stochastic n× n matrix P such that P2 = P and define

L(t) = γ (t)[P − In]. (11)

One finds for the corresponding map

T (t) = e−Ŵ(t)In + (1 − e−Ŵ(t))P, (12)

which is stochastic if Ŵ(t) ≥ 0.

For x ∈ R
n one defines the family of ℓp norms

||x||p :=
( n∑

k=1

|xk|p
)1/p

, (13)

for p ≥ 1. A stochastic matrix satisfies

||T x||1 ≤ ||x||1, (14)

that is, it is a contraction in ℓ1 norm. Hence, defining the Kolmogorov distance
between two probability vectors p1 and p2

D[p1,p2] :=
1

2
||p1 − p2||1, (15)

one has for any stochastic matrix T

D[T p1, T p2] ≤ D[p1,p2]. (16)

Following [19] this property may be used as the following definition of Markovian
evolution.
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DEFINITION 4 ([19]). Dynamical map T (t) is Markovian iff

d

dt
D[T (t)p1, T (t)p2] ≤ 0 (17)

for all pairs of probability vectors p1,p2.

Actually, P-divisibility implies (17) but the converse in general is not true [9].
One proves [9] the following theorem.

THEOREM 3. An invertible map T (t) is P-divisible if and only if

d

dt
||T (t)x||1 ≤ 0 (18)

for all vectors x ∈ R
n.

Note that in (18) one has x = p1 − p2 which implies that
∑

k xk = 0.

EXAMPLE 3. Consider T (t) defined in (10). Taking x = (1,−1)T one finds
||T (t)x||1 = 2e−Ŵ(t) and hence condition (18) is satisfied if and only if γ (t) ≥ 0.
For this simple example both definitions of Markovianity coincide.

2.2. Nonlocal master equation

Consider now the master equation for T (t) which is nonlocal in time

d

dt
T (t) =

∫ t

0

K(t − τ)T (τ)dτ, T (0) = In, (19)

where the so-called memory kernel K(t) encodes all dynamical features of the
system. Performing the Laplace transform

f (t) → f̃ (s) :=
∫ ∞

0

f (t)e−stdt, (20)

one finds

T̃ (s) =
1

s − K̃(s)
. (21)

PROBLEM 1. There is a natural question: what are the properties of K̃(s) which
guarantee that inverting T̃ (s) → T (t) one obtains a legitimate dynamical map T (t)
in the time domain?

Interestingly, this problem is related to a class of the so-called completely
monotone functions [16].

DEFINITION 5. A function f : R+ → R is called completely monotone (CM)
iff it satisfies

(−1)n
dn

dxn
f (x) ≥ 0, (22)

for n = 0, 1, 2, . . . .
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THEOREM 4 (Bernstein). A function f : R+ → R is CM iff

f (s) =
∫ ∞

0

g(t)e−stdt, (23)

for s ≥ 0 with g(t) ≥ 0, that is, CM function is a Laplace transform of a positive
function.

Now, it is clear that K(t) is a legitimate memory kernel iff its Laplace transform
K̃(s) gives rise to T̃ (s) such that

(−1)n
dn

dsn
T̃ (s) (24)

is a stochastic matrix for s ≥ 0 and n = 0, 1, 2, . . .. One may call T̃ (s) satisfying
an infinite hierarchy of constrains (24) a CM-stochastic. It shows that the nonlocal
master equation (6) simplifies in the Laplace transform domain. However, the price
one pays for this simplification is an infinite hierarchy of constrains (24) for T̃ (s)
instead of a single condition for T (t).

EXAMPLE 4. Let us consider the stochastic evolution generated by

K(t) = k(t)[P − In], (25)

where P is a stochastic matrix satisfying P2 = P (cf. Example 2). One finds for
the solution

T (t) =
(

1 −
∫ t

0

f (τ)dτ

)
In +

∫ t

0

f (τ)dτP, (26)

where the function f (t) is related to the memory function k(t) as follows

k̃(s) =
sf̃ (s)

1 − f̃ (s)
. (27)

This shows that for any function f (t) satisfying 0 ≤
∫ t

0
f (τ)dτ ≤ 1 gives rise to

the legitimate memory kernel via formula (27). It shows that we have two natural
representations of T (t): one coming from time-local L(t) defined and another one

coming from the memory kernel K(t). Note that condition
∫ t

0
f (τ)dτ ≥ 0 implies

that 1
s
f̃ (s) is CM. Moreover, condition 1−

∫ t
0
f (τ)dτ ≥ 0 implies that 1

s
(1− f̃ (s))is

CM as well. Using (27) one arrives at the following condition for the memory
function k(t): k(t) is legitimate if

1

s

k̃(s)

s + k̃(s)
,

1

s + k̃(s)

are CM. This condition is sufficient but not necessary.

EXAMPLE 5. Let us specify the above example for n = 2,

K(t) = k(t)

(
−1 1

1 −1

)
, (28)
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and consider the map

T (t) =
1

2

(
1 + cos t 1 − cos t

1 − cos t 1 − cos t

)
(29)

corresponding to f (t) = sin t . One easily finds for the memory function

k(t) = cosh(
√

2t). (30)

Note that in this case

1 −
∫ t

0

f (τ)dτ = cos t

is not positive, that is, condition 1 −
∫ t

0
f (τ)dτ ≥ 0 is sufficient but not necessary.

An interesting class of T (t) satisfying nonlocal master equation is provided by the
so-called semi-Markov evolution [20–24]: it is uniquely determined by a collection
of waiting time distributions qij (t) ≥ 0 such that qij (t)dt defines the probability of
jump from from a state ‘j ’ to ‘i’ no later than t + dt (assuming that it arrives at
‘j ’ at time t). It gives rise to a collection of survival probabilities

gj (t) = 1 −
n∑

i=1

∫ t

0

qij (τ )dτ. (31)

Now, one constructs the solution

T (t) = n(t)+ (n ∗ q)(t)+ (n ∗ q ∗ q)(t)+ · · · , (32)

where nij (t) = gi(t)δij . Assuming that
∑n

j=1

∫ t
0
qij (τ )dτ ≤ 1, the above series is

convergent for t ≥ 0. The corresponding nonlocal master equation for the probability
vector reads

d

dt
pi(t) =

d∑

j=1

∫ t

0

[Wij (t − τ)pj (τ )−Wji(t − τ)pi(τ )]dτ, (33)

where Wij (t) are defined in terms of the Laplace transform as follows

W̃ij (s) =
q̃ij (s)

g̃j (s)
. (34)

EXAMPLE 6. Consider 2-state evolution with qij (t) = 1
2
f (t) and

∫∞
0
f (t)dt ≤ 1.

The corresponding semi-Markov evolution is defined by (26) with

P =
1

2

(
1 1

1 1

)
.

It is therefore clear that semi-Markov evolution defines only a subclass of (26)
satisfying f (t) ≥ 0 and

∫∞
0
f (t)dt ≤ 1.

More examples of semi-Markov evolution may be found in [17].
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3. Quantum setting

A treatment of non-Markovian evolution in quantum physics is much more
involved than in the classical case. Even the sole definition is problematic. The
reason is simple. The very concept of conditional probabilities is not well defined in
quantum mechanics [25]. Current approaches towards defining quantum Markovianity
are based on generalizations of certain properties of classical dynamical maps, which
luckily can be translated to the language of quantum mechanics. Let us consider
a quantum system living in H = C

n. The evolution of the quantum state (a density
operator) ρ is represented by a family of completely positive trace-preserving (CPTP)
maps 3t : B(H) → B(H) via

ρ → ρt = 3t [ρ], (35)

such that 30 = id (identity map in B(H) — quantum dynamical map). In this paper
we analyze only finite-dimensional Hilbert spaces. Let us recall [26] that a linear
map 8 : B(H) → B(H) is positive if 8[X] ≥ 0 for X ≥ 0. It is k-positive if the
map

idk ⊗8 : Mk(C)⊗B(H) → Mk(C)⊗B(H), (36)

defined by idk ⊗8 : Mk(C)[A⊗B] = a ⊗8[B] is positive. Finally, it is completely
positive (CP) if it is k-positive for k = 1, 2, . . .. It is well known that if dimH = n,
then 8 is CP iff it is n-positive.

EXAMPLE 7. Let us consider a family of trace-preserving maps 8f : Mn(C) →
Mn(C) defined by

8f [X] :=
1

n− f
(IntrX − fX). (37)

One proves that 8f is k-positive but not (k + 1)-positive iff 1
k+1

< f ≤ 1
k
. In

particular for f = 1 one reconstructs the so-called reduction map well known in
quantum information theory. Reduction map is positive but not 2-positive.

Any CP map 8 possesses Kraus representation

8[ρ] =
∑

i

KiρK
†
i . (38)

This map is trace-preserving if the Kraus operators Ki satisfy
∑
i

K
†
i Ki = I. Let 3t

be a quantum dynamical map. Then we have the following definition.

DEFINITION 6. 3t is called k-divisible iff for any t > u there exists a k-positive
propagator 3t,u such that

3t = 3t,u3u. (39)

1-divisible maps is called P-divisible and if dimH = n, then n-divisible map is
called CP-divisible.
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In this paper we accept the following definition.

DEFINITION 7 ([9, 27–29]). A dynamical map 3t is Markovian iff it is CP-
divisible.

This definition is a direct generalization of Definition 3 for the classical Markovian
evolution. Suppose now that the dynamical map 3t satisfies time-local master equation

3̇t = Lt3t , 30 = id, (40)

where the time-local generator Lt has the following structure

Lt [ρ] = −i[H(t), ρ] +
1

2

∑

i

γi(t)
(
[Vi(t)ρ, V †

i (t)] + [Vi(t), ρV †
i (t)]

)
, (41)

with arbitrary noise operators Vi(t), Hermitian effective Hamiltonian H(t), and real
γi(t). This structure guarantees that 3t is trace-preserving and hermiticity-preserving.
However, it does not guarantee that 3t is CP (not even positive). Clearly, if γi(t) = 0,
then (40) generates unitary evolution with time-dependent Hamiltonian H(t).

THEOREM 5. Dynamical map 3t satisfying (40) is CP-divisible (Markovian) if
and only if γi(t) ≥ 0 [2, 30].

REMARK 1. If Lt = L is time independent then Theorem 5 reproduces the
celebrated result for the structure of the generator of Markovian semigroup [7, 8].

REMARK 2. It should be stressed that condition γi(t) ≥ 0 is necessary (and
sufficient) for CP-divisibility but it is not necessary to have 3t which is CP. Consider

Lt [ρ] =
1

2
γ (t)(σzρσz − ρ). (42)

One easily finds

3t [ρ] =
1

2
(1 + e−Ŵ(t))ρ +

1

2
(1 − e−Ŵ(t))σzρσz, (43)

which is CP iff Ŵ(t) =
∫ t

0
γ (τ)dτ ≥ 0. Hence, if γ (t) � 0 but Ŵ(t) ≥ 0, then 3t

represents quantum non-Markovian evolution.

COROLLARY 1. If the solution 3t of the time-local master equation (40) defined
by the following Dyson series

3t = T exp

(∫ t

0

Ludu

)
= id +

∫ t

0

dt1Lt1 +
∫ t

0

dt1

∫ t1

0

dt2Lt1Lt2 + . . . , (44)

is CP but γi(t) � 0, then 3t is non-Markovian.

PROBLEM 2. One of the open problems in the theory of open quantum systems
is the characterization of admissible time-local generators Lt which leads to CPTP
3t which is not CP-divisible.
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4. Witnessing non-Markovianity of quantum evolution

The natural question one may pose is how to check weather given evolution is
Markovian? A similar problem one faces in the theory of quantum entanglement.
The basic idea behind witnessing entanglement is to construct a linear operator
W ∈ B(H1 ⊗H2) such that 〈ψ1 ⊗ψ2|W |ψ1 ⊗ψ2〉 ≥ 0 but tr(Wρ) < 0 for some
entangled state living in H1 ⊗H2 (see [32] for a recent review). Construction of
entanglement witnesses utilizes the fact that the set of separable states is convex,
so that the Hahn–Banach separation theorem [33] applies and such linear operator
W always exists. On the other hand, the set of Markovian evolutions is not convex
even in the classical case, as one can easily prove by a direct calculation, therefore
non-Markovianity witness cannot be constructed in this simple fashion [29].

Let us introduce the trace norm ‖a ‖tr of an operator A ∈ B(H) as follows

‖X‖tr = tr
√
X†X. (45)

Note that for a normal operator A with spectrum spec a = {λ1, . . . , λn} one has

‖a ‖tr =
∑

i

|λi |. (46)

The importance of the trace norm in the theory of quantum non-Markovian evolution
arises from the following fundamental theorem, proved originally in [34].

THEOREM 6. A trace preserving map E is positive iff

‖E[X]‖tr ≤ ‖X‖tr (47)

for all Hermitian operators X.

Suppose now that a dynamical map 3t is invertible (as a linear map) and let
3t,s := 3t3

−1
s . One has the following result.

THEOREM 7 ([35]). 3t is k-divisible if and only if

‖(idk ⊗3t,s)[X]‖tr ≤ ‖X‖tr (48)

for any Hermitian X ∈ B(H⊗Ck) and arbitrary t > s. Equivalently, 3t is k-divisible
if and only if

d

dt
‖(idk ⊗3t)[X]‖tr ≤ 0 (49)

for any Hermitian X ∈ B(H).

Hence violation of (49) for some observable X witnesses that 3t is not k-
divisible. A special case corresponding to X = ρ1 − ρ2 was considered in [19]. For
any pair of density operators ρ1 and ρ2 one defines the so-called trace distance

D[ρ1, ρ2] =
1

2
||ρ1 − ρ2||tr. (50)
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DEFINITION 8 ([19]). A quantum dynamical map 3t is Markovian if

d

dt
D[3t [ρ1],3t [ρ2]] ≤ 0 (51)

for all pairs of states ρ1, ρ2.

Hence, (51) defines a special case of (49) corresponding to trX = 0. It is,
therefore, clear that BPL condition (51) is in general weaker than P-divisibility
condition (49) with k = 1. This approach, however, has a clear advantage, as it
does not really require the knowledge of the dynamical map – a situation very
appealing from an experimentalist point of view e.g. when the state tomography is
easier to perform than a full process tomography.

EXAMPLE 8. Consider 3t defined in (43),

ρ(t) = 3t [ρ] =
(

ρ11 e−Ŵ(t)ρ12

e−Ŵ(t)ρ21 ρ22

)
. (52)

One finds

D[ρ1(t), ρ2(t)] =
√
12

11 + |112|2e−2Ŵ(t), (53)

with 1ij = (ρ1 − ρ2)ij . It is clear that d
dt
D[ρ1(t), ρ2(t)] ≤ 0 iff γ (t) ≥ 0. Hence in

this simple example both definitions of Markovianity coincide.

EXAMPLE 9 (Pauli channels). Consider a qubit evolution defined by

3t [ρ] =
3∑

α=0

pα(t)σαρσα, (54)

with pα(t) being probability vector with pα(0) = δα0, and {σ0 = I2, σ1, σ2, σ3) are
Pauli matrices. The corresponding time-local generator reads

Lt [ρ] =
1

2

3∑

k=1

γk(t)(σkρσk − ρ). (55)

It is clear that 3t is CP-divisible (Markovian) if and only if

γ1(t) ≥ 0, γ2(t) ≥ 0, γ3(t) ≥ 0. (56)

One may prove [36, 37] that 3t is P-divisible if and only if much weaker conditions
are satisfied

γ1(t)+ γ2(t) ≥ 0, γ2(t)+ γ3(t) ≥ 0, γ3(t)+ γ1(t) ≥ 0. (57)

Summarising: for the Pauli channel evolution (54) Markovianity (= CP-divisibility)
is controlled by (56), whereas P-divisiblity which is in this case equivalent to
BLP-Markovianity is controlled by (57).
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EXAMPLE 10. An interesting example of 3t which violates (56) but satisfies
(57) was recently proposed in [38],

γ1(t) = γ2(t) = 1, γ3(t) = − tanh t. (58)

Note that γ3(t) is always negative and hence Ŵ3(t) =
∫ t

0
γ3(τ )dτ < 0. Nevertheless,

the map 3t is CP and P-divisible due to (57).

5. Memory kernels—quantum case

As in the classical case let us now consider quantum dynamical map 3t satisfying
nonlocal equation

3̇t =
∫ t

0

Kt−τ3τdτ, 30 = id, (59)

where Kt is the corresponding memory kernel encoding dynamical properties of
the quantum system. Note that when Kt = 2δ(t)L and L has the form of a time-
independent generator, then (59) reduces to the standard local master equation for
the Markovian semi-group. Using the same arguments as in the classical case one
finds the following relation in the Laplace transform domain

s3̃s − id = K̃s3̃s, (60)

and hence

3̃s =
1

s − K̃s
, (61)

which is the analog of (21).

PROBLEM 3. There is a natural question: what are the properties of K̃s which
guarantee that inverting 3̃s → 3t one obtains a legitimate dynamical map 3t in
the time domain?

The answer is provided by the “quantum analog” of the Bernstein theorem.

THEOREM 8. a Laplace transform K̃s gives rise to a legitimate dynamical map
3t if and only if

(−1)n
dn

dsn

1

s − K̃s
(62)

is CP for n = 1, 2, . . ., and s ≥ 0.

It shows that it is very hard to control whether K̃s provides a legitimate memory
kernel — one needs to control the infinite hierarchy of nontrivial conditions (62).

REMARK 3. A function 3̃s such that

(−1)n
dn

dsn
3̃s (63)

defines a completely positive map for n = 1, 2, . . ., and s ≥ 0 one may call CM-CP
map.
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COROLLARY 2. Note that when Kt = δ(t)L, then K̃s = L and hence (63) implies
that

(−1)n
dn

dsn

1

s − L
(64)

is positive for n = 0, 1, 2, . . . , and s ≥ 0. In particular one has for n = 0

1

s − L
=

1

s

(
id +

L

s
+
L2

s2
+ . . .

)
, (65)

and for general n ≥ 1,

(−1)n
dn

dsn

1

s − L
=

1

sn+1

(
n!
0!

id +
(n+ 1)!

1!
L

s
+
(n+ 2)!

2!
L2

s2
+ . . .

)
. (66)

Note that (65) and (66) provide another natural representation of a CP map. It
should be stressed that the well-known exponential representation

etL = id + tL+
1

2
t2L2 +

1

3!
t3L3 + · · · , (67)

guarantees that the map is CPTP whereas (65) and (66) are not trace-preserving.

EXAMPLE 11 (Pauli channel—memory kernel). Consider a memory kernels of
the following form

Kt [ρ] =
1

2

3∑

i=1

ki(t)(σiρσi − ρ). (68)

Let κi(t) denote the eigenvalues of Kt

Kt [σi] = κi(t)σi, i = 1, 2, 3. (69)

One has the following relations:

k1(t)=
1

2
(κ1(t)− κ2(t)− κ3(t)),

k2(t)=
1

2
(−κ1(t)+ κ2(t)− κ3(t)), (70)

k3(t)=
1

2
(−κ1(t)− κ2(t)+ κ3(t)).

In [39] we proposed the following construction: let a1, a2, a3 > 0 such that

1

a1

+
1

a2

≥
1

a3

,

1

a2

+
1

a3

≥
1

a1

, (71)

1

a3

+
1

a1

≥
1

a2

.
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Let f (t) be a real function satisfying

0 ≤
∫ t

0

f (τ)dτ ≤ 4

(
1

a1

+
1

a2

+
1

a3

)−1

. (72)

Then

κ̃k(s) =
−sf̃ (s)
ak − f̃ (s)

=
−sf̃k(s)
1 − f̃k(s)

, (73)

with fk(t) = f (t)/ak, gives rise to the legitimate memory kernel. Interestingly, within
this class of memory kernels one may easily control both P- and CP-divisibility.
One proves [39] that such kernel gives rise to a P-divisible evolution iff f (t) ≥ 0
and ∫ ∞

0

f (t)dt ≤ min{a1, a2, a3}. (74)

Moreover, it gives rise to a P-divisible evolution iff f (t) ≥ 0 and

∞∫

0

f (τ)dτ ≤ a1 −
√
(a2 − a1)(a3 − a1), (75)

where we assumed a1 ≤ a2 ≤ a3. Note that in the isotropic case a1 = a2 = a3 =: a
one has k1(t) = k2(t) = k3(t) and P-divisibility coincides with CP-divisibility, i.e.∫∞

0
f (t)dt ≤ a. In particular taking a1 = a2 = 1, a3 = 1

2
, and

f (t) = e−2t , (76)

one finds

Kt [ρ] =
1

2

{
δ(t)(σ1ρσ1 + σ2ρσ2 − 2ρ)+ e−t(σ3ρσ3 − ρ)

}
, (77)

which generates the evolution corresponding to (58) in time-local description [39].
Interestingly, this evolution turns out to be a convex combination of two Markovian
semi-groups

3t =
1

2
(etL1 + etL2), (78)

where
Lk[ρ] =

1

2
(σkρσk − ρ). (79)

This example shows that taking a convex combination of Markovian semi-groups
one constructs a dynamical map with nontrivial memory kernel.

Qubit evolution within memory kernel approach was also analyzed e.g. in
[22, 40, 41] (see also [42, 43]).

6. Conclusions

We provided a basic mathematical introduction to the non-Markovian quantum
evolution based on the concept of CP-divisible maps. This concept defines a natural
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generalization of P-divisible classical stochastic evolution which is closely related
to classical Markovian stochastic process. We analyzed both time-local approach
based on local generators and nonlocal approach governed by the corresponding
memory kernel known in the literature as the Nakajima–Zwanzig master equation.
Non-Markovian evolution is usually linked to realistic description of a variety of
complex physical systems where the standard Born–Markov type of approximations
are no longer suitable. The problem of non-Markovian evolution is also interesting
from the point of view of precise control of quantum systems which is extremely
important for modern quantum technologies.

It should be stressed that there are other approaches to quantum non-Markovian
evolution (see recent review [10]). The advantage of mathematical approach advocated
in this paper is a clear characterization of Markovian evolution in terms of time-local
generators. Other approaches like for example the one based on distinguishability of
quantum states [10] are more physically oriented as can be experimentally verified.
The verification of CP-divisibility is very demanding and requires in general full
process tomography. This shows that quantum non-Markovianity is a complex multi-
facet phenomenon which still deserves further analysis.
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[36] D. Chruściński and F. A. Wudarski: Phys. Lett. A 377 (2013), 1425.
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